1
|
Apykhtina OL, Dybkova SM, Sokurenko LM and
Chaikovsky YB: Cytotoxic and genotoxic effects of cadmium sulfide
nanoparticles. Exp Oncol. 40:194–199. 2018.PubMed/NCBI
|
2
|
Surolia R, Karki S, Kim H, Yu Z, Kulkarni
T, Mirov SB, Carter AB, Rowe SM, Matalon S, Thannickal VJ, et al:
Heme oxygenase-1-mediated autophagy protects against pulmonary
endothelial cell death and development of emphysema in
cadmium-treated mice. Am J Physiol Lung Cell Mol Physiol.
309:L280–l292. 2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Angeli JK, Cruz Pereira CA, de Oliveira
Faria T, Stefanon I, Padilha AS and Vassallo DV: Cadmium exposure
induces vascular injury due to endothelial oxidative stress: The
role of local angiotensin II and COX-2. Free Radic Biol Med.
65:838–848. 2013.PubMed/NCBI View Article : Google Scholar
|
4
|
Chen H, Lu Y, Cao Z, Ma Q, Pi H, Fang Y,
Yu Z, Hu H and Zhou Z: Cadmium induces NLRP3 inflammasome-dependent
pyroptosis in vascular endothelial cells. Toxicol Lett. 246:7–16.
2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Chen X, Li J, Cheng Z, Xu Y, Wang X, Li X,
Xu D, Kapron CM and Liu J: Low dose cadmium inhibits proliferation
of human renal mesangial cells via activation of the JNK pathway.
Int J Environ Res Public Health. 13(990)2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Liu F, Wang B, Li L, Dong F, Chen X, Li Y,
Dong X, Wada Y, Kapron CM and Liu J: Low-dose cadmium upregulates
VEGF expression in lung adenocarcinoma cells. Int J Environ Res
Public Health. 12:10508–10521. 2015.PubMed/NCBI View Article : Google Scholar
|
7
|
Prozialeck WC, Edwards JR and Woods JM:
The vascular endothelium as a target of cadmium toxicity. Life Sci.
79:1493–1506. 2006.PubMed/NCBI View Article : Google Scholar
|
8
|
Nagarajan S, Rajendran S, Saran U, Priya
MK, Swaminathan A, Siamwala JH, Sinha S, Veeriah V, Sonar P, Jadhav
V, et al: Nitric oxide protects endothelium from cadmium mediated
leakiness. Cell Biol Int. 37:495–506. 2013.PubMed/NCBI View Article : Google Scholar
|
9
|
Fujiwara Y, Yamamoto C, Yoshida E, Kumagai
Y and Kaji T: Heparan sulfate chains potentiate cadmium
cytotoxicity in cultured vascular endothelial cells. Arch Toxicol.
90:259–267. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Lampugnani MG, Resnati M, Raiteri M,
Pigott R, Pisacane A, Houen G, Ruco LP and Dejana E: A novel
endothelial-specific membrane protein is a marker of cell-cell
contacts. J Cell Biol. 118:1511–1522. 1992.PubMed/NCBI View Article : Google Scholar
|
11
|
Lagendijk AK and Hogan BM: VE-cadherin in
vascular development: A coordinator of cell signaling and tissue
morphogenesis. Curr Top Dev Biol. 112:325–352. 2015.PubMed/NCBI View Article : Google Scholar
|
12
|
Dejana E and Vestweber D: The role of
VE-cadherin in vascular morphogenesis and permeability control.
Prog Mol Biol Transl Sci. 116:119–144. 2013.PubMed/NCBI View Article : Google Scholar
|
13
|
Du L, Dong F, Guo L, Hou Y, Yi F, Liu J
and Xu D: Interleukin-1β increases permeability and upregulates the
expression of vascular endothelial-cadherin in human renal
glomerular endothelial cells. Mol Med Rep. 11:3708–3714.
2015.PubMed/NCBI View Article : Google Scholar
|
14
|
Li L, Chen X, Dong F, Liu Q, Zhang C, Xu
D, Allen TD and Liu J: Dihydroartemisinin up-regulates VE-cadherin
expression in human renal glomerular endothelial cells. J Cell Mol
Med. 22:2028–2032. 2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhang C, Liu Q, Dong F, Li L, Du J, Xie Q,
Hu H, Yan S, Zhou X, Li C, et al: Catalpol downregulates vascular
endothelial-cadherin expression and induces vascular
hyperpermeability. Mol Med Rep. 13:373–378. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Liu J, Dong F, Jeong J, Masuda T and Lobe
CG: Constitutively active Notch1 signaling promotes
endothelialmesenchymal transition in a conditional transgenic mouse
model. Int J Mol Med. 34:669–676. 2014.PubMed/NCBI View Article : Google Scholar
|
17
|
Gheorghescu A and Thompson J: Delayed
vasculogenesis and impaired angiogenesis due to altered Ang-2 and
VE-cadherin levels in the chick embryo model following exposure to
cadmium. Pediatr Surg Int. 32:175–186. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Li L, Dong F, Xu D, Du L, Yan S, Hu H,
Lobe CG, Yi F, Kapron CM and Liu J: Short-term, low-dose cadmium
exposure induces hyperpermeability in human renal glomerular
endothelial cells. J Appl Toxicol. 36:257–265. 2016.PubMed/NCBI View
Article : Google Scholar
|
19
|
Dong F, Guo F, Li L, Guo L, Hou Y, Hao E,
Yan S, Allen TD and Liu J: Cadmium induces vascular permeability
via activation of the p38 MAPK pathway. Biochem Biophys Res Commun.
450:447–452. 2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Etienne-Manneville S and Hall A: Rho
GTPases in cell biology. Nature. 420:629–635. 2002.PubMed/NCBI View Article : Google Scholar
|
21
|
Wang J, Liu X and Zhong Y:
Rho/Rho-associated kinase pathway in glaucoma (Review). Int J
Oncol. 43:1357–1367. 2013.PubMed/NCBI View Article : Google Scholar
|
22
|
Huang Y, Tan Q, Chen R, Cao B and Li W:
Sevoflurane prevents lipopolysaccharide-induced barrier dysfunction
in human lung microvascular endothelial cells: Rho-mediated
alterations of VE-cadherin. Biochem Biophys Res Commun.
468:119–124. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
24
|
Guo L, Dong F, Hou Y, Cai W, Zhou X, Huang
AL, Yang M, Allen TD and Liu J: Dihydroartemisinin inhibits
vascular endothelial growth factor-induced endothelial cell
migration by a p38 mitogen-activated protein kinase-independent
pathway. Exp Ther Med. 8:1707–1712. 2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Prozialeck WC: Evidence that E-cadherin
may be a target for cadmium toxicity in epithelial cells. Toxicol
Appl Pharmacol. 164:231–249. 2000.PubMed/NCBI View Article : Google Scholar
|
26
|
Lefranc F, Sauvage S, Van Goietsenoven G,
Mégalizzi V, Lamoral-Theys D, Debeir O, Spiegl-Kreinecker S, Berger
W, Mathieu V, Decaestecker C and Kiss R: Narciclasine, a plant
growth modulator, activates Rho and stress fibers in glioblastoma
cells. Mol Cancer Ther. 8:1739–1750. 2009.PubMed/NCBI View Article : Google Scholar
|
27
|
Wang X, Dong F, Wang F, Yan S, Chen X,
Tozawa H, Ushijima T, Kapron CM, Wada Y and Liu J: Low dose cadmium
upregulates the expression of von Willebrand factor in endothelial
cells. Toxicol Lett. 290:46–54. 2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Wei T, Jia J, Wada Y, Kapron CM and Liu J:
Dose dependent effects of cadmium on tumor angiogenesis.
Oncotarget. 8:44944–44959. 2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Chen X, Li L, Liu F, Hoh J, Kapron CM and
Liu J: Cadmium induces glomerular endothelial cell-specific
expression of complement factor H via the -1635 AP-1 binding site.
J Immunol. 202:1210–1218. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Messner B, Turkcan A, Ploner C, Laufer G
and Bernhard D: Cadmium overkill: Autophagy, apoptosis and necrosis
signalling in endothelial cells exposed to cadmium. Cell Mol Life
Sci. 73:1699–1713. 2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhang H, Li L, Wang Y, Dong F, Chen X, Liu
F, Xu D, Yi F, Kapron CM and Liu J: NF-ĸB signaling maintains the
survival of cadmium-exposed human renal glomerular endothelial
cells. Int J Mol Med. 38:417–422. 2016.PubMed/NCBI View Article : Google Scholar
|
32
|
Woods JM, Leone M, Klosowska K, Lamar PC,
Shaknovsky TJ and Prozialeck WC: Direct antiangiogenic actions of
cadmium on human vascular endothelial cells. Toxicol In Vitro.
22:643–651. 2008.PubMed/NCBI View Article : Google Scholar
|
33
|
Wolf MB and Baynes JW: Cadmium and mercury
cause an oxidative stress-induced endothelial dysfunction.
Biometals. 20:73–81. 2007.PubMed/NCBI View Article : Google Scholar
|
34
|
Dong Z, Wang L, Xu J, Li Y, Zhang Y, Zhang
S and Miao J: Promotion of autophagy and inhibition of apoptosis by
low concentrations of cadmium in vascular endothelial cells.
Toxicol In Vitro. 23:105–110. 2009.PubMed/NCBI View Article : Google Scholar
|
35
|
Eisa-Beygi S and Wen XY: Could
pharmacological curtailment of the RhoA/Rho-kinase pathway reverse
the endothelial barrier dysfunction associated with Ebola virus
infection? Antiviral Res. 114:53–56. 2015.PubMed/NCBI View Article : Google Scholar
|
36
|
Liu J, Wada Y, Katsura M, Tozawa H, Erwin
N, Kapron CM, Bao G and Liu J: Rho-associated coiled-coil kinase
(ROCK) in molecular regulation of angiogenesis. Theranostics.
8:6053–6069. 2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Grothaus JS, Ares G, Yuan C, Wood DR and
Hunter CJ: Rho kinase inhibition maintains intestinal and vascular
barrier function by upregulation of occludin in experimental
necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol.
315:G514–G528. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Yang M, Chen XM, Du XG, Cao FF, Vijaya
Luxmi S and Shen Q: Continuous blood purification ameliorates
endothelial hyperpermeability in SAP patients with MODS by
regulating tight junction proteins via ROCK. Int J Artif Organs.
36:700–709. 2013.PubMed/NCBI View Article : Google Scholar
|
39
|
Warfel JM and D'Agnillo F: Anthrax lethal
toxin-mediated disruption of endothelial VE-cadherin is attenuated
by inhibition of the Rho-associated kinase pathway. Toxins (Basel).
3:1278–1293. 2011.PubMed/NCBI View Article : Google Scholar
|
40
|
Daneshjou N, Sieracki N, van Nieuw
Amerongen GP, Conway DE, Schwartz MA, Komarova YA and Malik AB:
Rac1 functions as a reversible tension modulator to stabilize
VE-cadherin trans-interaction. J Cell Biol. 208:23–32.
2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Li S, Ai N, Shen M, Dang Y, Chong CM, Pan
P, Kwan YW, Chan SW, Leung GPH, Hoi MPM, et al: Discovery of a ROCK
inhibitor, FPND, which prevents cerebral hemorrhage through
maintaining vascular integrity by interference with VE-cadherin.
Cell Death Discov. 3(17051)2017.PubMed/NCBI View Article : Google Scholar
|