1
|
Zhu N, Zhang D, Wang W, Li X, Yang B, Song
J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from
patients with pneumonia in China, 2019. N Engl J Med. 382:727–733.
2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Wang Z, Ye D, Wang M, Zhao M, Li D, Ye J,
Liu J, Xu Y, Zhang J, Pan W, et al: Clinical features of COVID-19
patients with different outcomes in Wuhan: A retrospective
observational study. Biomed Res Int. 2020(2138387)2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Alsofayan YM, Althunayyan SM, Khan AA,
Hakawi AM and Assiri AM: Clinical characteristics of COVID-19 in
Saudi Arabia: A national retrospective study. J Infect Public
Health. 13:920–925. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Mahase E: Coronavirus covid-19 has killed
more people than SARS and MERS combined, despite lower case
fatality rate. BMJ. 368(m641)2020.PubMed/NCBI View
Article : Google Scholar
|
5
|
Chegni H, Pakravan N, Saadati M, Ghaffari
AD, Shirzad H and Hassan ZM: Is there a link between COVID-19
mortality with genus, age, ABO blood group type, and ACE2 gene
polymorphism? Iran J Public Health. 49:1582–1584. 2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Zietz M, Zucker J and Tatonetti NP:
Associations between blood type and COVID-19 infection, intubation,
and death. Nat Commun. 11(5761)2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Suryamohan K, Diwanji D, Stawiski EW,
Gupta R, Miersch S, Liu J, Chen C, Jiang YP, Fellouse FA,
Sathirapongsasuti JF, et al: Human ACE2 receptor polymorphisms and
altered susceptibility to SARS-CoV-2. Commun Biol.
4(475)2021.PubMed/NCBI View Article : Google Scholar
|
8
|
Shah H, Khan MS, Dhurandhar NV and Hegde
V: The triumvirate: Why hypertension, obesity, and diabetes are
risk factors for adverse effects in patients with COVID-19. Acta
Diabetol. 58:831–843. 2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Soldo J, Heni M, Königsrainer A, Häring
HU, Birkenfeld AL and Peter A: Increased hepatic ACE2 expression in
NAFL and diabetes-a risk for COVID-19 patients? Diabetes Care.
43:e134–e136. 2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Wong MK: Angiotensin converting enzymes,
subchapter 29D. In: Handbook of Hormones. Comparative Endocrinology
for Basic and Clinical Research. Takei Y, Ando H and Tsutsui K
(eds). Elsevier, pp263-265, e29D-1-e29D-4, 2016.
|
11
|
Clarke NE and Turner AJ:
Angiotensin-converting enzyme 2: The first decade. Int J Hypertens.
2012(307315)2012.PubMed/NCBI View Article : Google Scholar
|
12
|
Samavati L and Uhal BD: ACE2, Much more
than just a receptor for SARS-COV-2. Front Cell Infect Microbiol.
10(317)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Devaux CA, Rolain JM and Raoult D: ACE2
receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension,
multi-organ failure, and COVID-19 disease outcome. J Microbiol
Immunol Infect. 53:425–435. 2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Elfaki I, Mir R, Duhier FMA, Alotaibi MA,
Alalawy AI, Barnawi J, Babakr AT, Mir MM, Altayeb F, Mirghani H and
Frah EA: Clinical implications of MiR128, angiotensin I converting
enzyme and vascular endothelial growth factor gene abnormalities
and their association with T2D. Curr Issues Mol Biol. 43:1859–1875.
2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Burrell LM, Harrap SB, Velkoska E and
Patel SK: The ACE2 gene: Its potential as a functional candidate
for cardiovascular disease. Clin Sci (Lond). 124:65–76.
2013.PubMed/NCBI View Article : Google Scholar
|
16
|
Luo Y, Liu C, Guan T, Li Y, Lai Y, Li F,
Zhao H, Maimaiti T and Zeyaweiding A: Association of ACE2 genetic
polymorphisms with hypertension-related target organ damages in
south Xinjiang. Hypertens Res. 42:681–689. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Sarzani R, Giulietti F, Di Pentima C,
Giordano P and Spannella F: Disequilibrium between the classic
renin-angiotensin system and its opposing arm in SARS-CoV-2-related
lung injury. Am J Physiol Lung Cell Mol Physiol. 319:L325–L336.
2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y,
Hou C, Wang H, Liu J, Yang D, et al: Role of angiotensin-converting
enzyme 2 (ACE2) in COVID-19. Crit Care. 24(422)2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Wrapp D, Wang N, Corbett KS, Goldsmith JA,
Hsieh CL, Abiona O, Graham BS and McLellan JS: Cryo-EM structure of
the 2019-nCoV spike in the prefusion conformation. Science.
367:1260–1263. 2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Mir MM, Mir R, Alghamdi MA, Alsayed BA,
Wani JI, Alharthi MH and Al-Shahrani AM: Strong association of
angiotensin converting enzyme-2 gene insertion/deletion
polymorphism with susceptibility to SARS-CoV-2, hypertension,
coronary artery disease and COVID-19 disease mortality. J Pers Med.
11(1098)2021.PubMed/NCBI View Article : Google Scholar
|
21
|
O'Brien J, Hayder H, Zayed Y and Peng C:
Overview of MicroRNA biogenesis, mechanisms of actions, and
circulation. Front Endocrinol (Lausanne). 9(402)2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Shantikumar S, Caporali A and Emanueli C:
Role of microRNAs in diabetes and its cardiovascular complications.
Cardiovasc Res. 93:583–593. 2012.PubMed/NCBI View Article : Google Scholar
|
23
|
Mir R, Elfaki I, Khullar N, Waza AA, Jha
C, Mir MM, Nisa S, Mohammad B, Mir TA, Maqbool M, et al: Role of
selected miRNAs as diagnostic and prognostic biomarkers in
cardiovascular diseases, including coronary artery disease,
myocardial infarction and atherosclerosis. J Cardiovasc Dev Dis.
8(22)2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Bhat AA, Younes SN, Raza SS, Zarif L,
Nisar S, Ahmed I, Mir R, Kumar S, Sharawat SK, Hashem S, et al:
Role of non-coding RNA networks in leukemia progression, metastasis
and drug resistance. Mol Cancer. 19(57)2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Jha CK, Mir R, Elfaki I, Khullar N, Rehman
S, Javid J, Banu S and Chahal SM: Potential impact of MicroRNA-423
gene variability in coronary artery disease. Endocr Metab Immune
Disord Drug Targets. 19:67–74. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Elfaki I, Mir R, Mir MM, AbuDuhier FM,
Babakr AT and Barnawi J: Potential impact of MicroRNA gene
polymorphisms in the pathogenesis of diabetes and atherosclerotic
cardiovascular disease. J Pers Med. 9(51)2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Kałużna EM: MicroRNA-155 and
microRNA-196b: Promising biomarkers in hepatitis C virus infection?
Rev Med Virol. 24:169–185. 2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Kim D, Kim S, Park J, Chang HR, Chang J,
Ahn J, Park H, Park J, Son N, Kang G, et al: A high-resolution
temporal atlas of the SARS-CoV-2 translatome and transcriptome. Nat
Commun. 12(5120)2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Kirik MP, Pehlivan M, Nursal AF, Oyaci Y,
Pehlivan S and Serin I: The miRNA 196a2 rs11614913 variant has
prognostic impact on Turkish patients with multiple myeloma. BMC
Res Notes. 13(545)2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Íñiguez M, Pérez-Matute P,
Villoslada-Blanco P, Recio-Fernandez E, Ezquerro-Pérez D, Alba J,
Ferreira-Laso ML and Oteo JA: ACE gene variants rise the risk of
severe COVID-19 in patients with hypertension, dyslipidemia or
diabetes: A spanish pilot study. Front Endocrinol (Lausanne).
12(688071)2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Schuler R, Osterhoff MA, Frahnow T,
Seltmann AC, Busjahn A, Kabisch S, Xu L, Mosig AS, Spranger J,
Möhlig M, et al: High-saturated-fat diet increases circulating
angiotensin-converting enzyme, which is enhanced by the rs4343
polymorphism defining persons at risk of nutrient-dependent
increases of blood pressure. J Am Heart Assoc.
6(e004465)2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Firouzabadi N, Shafiei M, Bahramali E,
Ebrahimi SA, Bakhshandeh H and Tajik N: Association of
angiotensin-converting enzyme (ACE) gene polymorphism with elevated
serum ACE activity and major depression in an Iranian population.
Psychiatry Res. 200:336–342. 2012.PubMed/NCBI View Article : Google Scholar
|
33
|
Fagyas M, Kertész A, Siket IM, Bánhegyi V,
Kracskó B, Szegedi A, Szokol M, Vajda G, Rácz I, Gulyás H, et al:
Level of the SARS-CoV-2 receptor ACE2 activity is highly elevated
in old-aged patients with aortic stenosis: Implications for ACE2 as
a biomarker for the severity of COVID-19. Geroscience. 43:19–29.
2021.PubMed/NCBI View Article : Google Scholar
|
34
|
Yu D, Du Q, Yan S, Guo XG, He Y, Zhu G,
Zhao K and Ouyang S: Liver injury in COVID-19: Clinical features
and treatment management. Virol J. 18(121)2021.PubMed/NCBI View Article : Google Scholar
|
35
|
Bensen JT, Graff M, Young KL, Sethupathy
P, Parker J, Pecot CV, Currin K, Haddad SA, Ruiz-Narváez EA, Haiman
CA, et al: A survey of microRNA single nucleotide polymorphisms
identifies novel breast cancer susceptibility loci in a
case-control, population-based study of African-American women.
Breast Cancer Res. 20(45)2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Pordzik J, Jakubik D, Jarosz-Popek J,
Wicik Z, Eyileten C, De Rosa S, Indolfi C, Siller-Matula JM, Czajka
P and Postula M: Significance of circulating microRNAs in diabetes
mellitus type 2 and platelet reactivity: Bioinformatic analysis and
review. Cardiovasc Diabetol. 18(113)2019.PubMed/NCBI View Article : Google Scholar
|
37
|
Zhou SS, Jin JP, Wang JQ, Zhang ZG,
Freedman JH, Zheng Y and Cai L: miRNAS in cardiovascular diseases:
Potential biomarkers, therapeutic targets and challenges. Acta
Pharmacol Sin. 39:1073–1084. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Peng Y and Croce CM: The role of MicroRNAs
in human cancer. Signal Transduct Target Ther.
1(15004)2016.PubMed/NCBI View Article : Google Scholar
|
39
|
Gholami M, Asgarbeik S, Razi F, Esfahani
EN, Zoughi M, Vahidi A, Larijani B and Amoli MM: Association of
microRNA gene polymorphisms with type 2 diabetes mellitus: A
systematic review and meta-analysis. J Res Med Sci.
25(56)2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Ghafouri-Fard S, Gholipour M and Taheri M:
Role of MicroRNAs in the pathogenesis of coronary artery disease.
Front Cardiovasc Med. 8(632392)2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Sung JH, Kim SH, Yang WI, Kim WJ, Moon JY,
Kim IJ, Cha DH, Cho SY, Kim JO, Kim KA, et al: miRNA polymorphisms
(miR-146a, miR-149, miR-196a2 and miR-499) are associated with the
risk of coronary artery disease. Mol Med Rep. 14:2328–2342.
2016.PubMed/NCBI View Article : Google Scholar
|
42
|
Ellwanger JH, Zambra FMB, Guimarães RL and
Chies JA: MicroRNA-related polymorphisms in infectious
diseases-tiny changes with a huge impact on viral infections and
potential clinical applications. Front Immunol.
9(1316)2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Drury RE, O'Connor D and Pollard AJ: The
clinical application of MicroRNAs in infectious disease. Front
Immunol. 8(1182)2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Chen C, Zhang Y, Zhang L, Weakley SM and
Yao Q: MicroRNA-196: Critical roles and clinical applications in
development and cancer. J Cell Mol Med. 15:14–23. 2011.PubMed/NCBI View Article : Google Scholar
|
45
|
Gupta P, Cairns MJ and Saksena NK:
Regulation of gene expression by microRNA in HCV infection and
HCV-mediated hepatocellular carcinoma. Virol J.
11(64)2014.PubMed/NCBI View Article : Google Scholar
|
46
|
Hou W, Tian Q, Zheng J and Bonkovsky HL:
MicroRNA-196 represses bach1 protein and hepatitis C virus gene
expression in human hepatoma cells expressing hepatitis C viral
proteins. Hepatology. 51:1494–1504. 2010.PubMed/NCBI View Article : Google Scholar
|
47
|
Tian T, Wang M, Zhu W, Dai ZM, Lin S, Yang
PT, Liu XH, Liu K, Zhu YY, Zheng Y, et al: MiR-146a and miR-196a-2
polymorphisms are associated with hepatitis virus-related
hepatocellular cancer risk: a meta-analysis. Aging (Albany NY).
9:381–392. 2017.PubMed/NCBI View Article : Google Scholar
|
48
|
Kim WR, Park EG, Kang KW, Lee SM, Kim B
and Kim HS: Expression analyses of MicroRNAs in hamster lung
tissues infected by SARS-CoV-2. Mol Cells. 43:953–963.
2020.PubMed/NCBI View Article : Google Scholar
|