1
|
Alicic RZ, Rooney MT and Tuttle KR:
Diabetic kidney disease: Challenges, progress, and possibilities.
Clin J Am Soc Nephrol. 12:2032–2045. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Lin YC, Chang YH, Yang SY, Wu KD and Chu
TS: Update of pathophysiology and management of diabetic kidney
disease. J Formos Med Assoc. 117:662–675. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Anders HJ, Huber TB, Isermann B and
Schiffer M: CKD in diabetes: Diabetic kidney disease versus
nondiabetic kidney disease. Nat Rev Nephrol. 14:361–377.
2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Zhao JH: Mesangial cells and renal
fibrosis. Adv Exp Med Biol. 1165:165–194. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Dong Z, Sun Y, Wei G, Li S and Zhao Z:
Ergosterol ameliorates diabetic nephropathy by attenuating
mesangial cell proliferation and extracellular matrix deposition
via the TGF-β1/Smad2 signaling pathway. Nutrients.
11(483)2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Marciano DK: Mesangial cells: The tuft
guys of glomerular development. J Am Soc Nephrol. 30:1551–1553.
2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Tung CW, Hsu YC, Shih YH, Chang PJ and Lin
CL: Glomerular mesangial cell and podocyte injuries in diabetic
nephropathy. Nephrology (Carlton). 23 (Suppl 4):S32–S37.
2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Parton RG, Tillu VA and Collins BM:
Caveolae. Curr Biol. 28:R402–R405. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Parton RG, McMahon KA and Wu Y: Caveolae:
Formation, dynamics, and function. Curr Opin Cell Biol. 65:8–16.
2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Wang S, Wang N, Zheng Y, Zhang J, Zhang F
and Wang Z: Caveolin-1: An oxidative stress-related target for
cancer prevention. Oxid Med Cell Longev.
2017(7454031)2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Peng F, Wu D, Ingram AJ, Zhang B, Gao B
and Krepinsky JC: RhoA activation in mesangial cells by mechanical
strain depends on caveolae and caveolin-1 interaction. J Am Soc
Nephrol. 18:189–198. 2007.PubMed/NCBI View Article : Google Scholar
|
12
|
Mehta N, Zhang D, Li R, Wang T, Gava A,
Parthasarathy P, Gao B and Krepinsky JC: Caveolin-1 regulation of
Sp1 controls production of the antifibrotic protein follistatin in
kidney mesangial cells. Cell Commun Signal. 17(37)2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Sun LN, Liu XC, Chen XJ, Guan GJ and Liu
G: Curcumin attenuates high glucose-induced podocyte apoptosis by
regulating functional connections between caveolin-1
phosphorylation and ROS. Acta Pharmacol Sin. 37:645–655.
2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Rauf A, Imran M, Abu-Izneid T,
Iahtisham-Ul-Haq Patel S, Pan X, Naz S, Sanches Silva A, Saeed F
and Rasul Suleria HA: Proanthocyanidins: A comprehensive review.
Biomed Pharmacother. 116(108999)2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Luca SV, Macovei I, Bujor A, Miron A,
Skalicka-Woźniak K, Aprotosoaie AC and Trifan A: Bioactivity of
dietary polyphenols: The role of metabolites. Crit Rev Food Sci
Nutr. 60:626–659. 2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Su H, Li Y, Hu D, Xie L, Ke H, Zheng X and
Chen W: Procyanidin B2 ameliorates free fatty acids-induced hepatic
steatosis through regulating TFEB-mediated lysosomal pathway and
redox state. Free Radic Biol Med. 126:269–286. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Bao L, Cai X, Zhang Z and Li Y: Grape seed
procyanidin B2 ameliorates mitochondrial dysfunction and inhibits
apoptosis via the AMP-activated protein kinase-silent mating type
information regulation 2 homologue 1-PPARγ co-activator-1α axis in
rat mesangial cells under high-dose glucosamine. Br J Nutr.
113:35–44. 2014.PubMed/NCBI View Article : Google Scholar
|
18
|
Zhou Y, Li BY, Li XL, Wang YJ, Zhang Z,
Pei F, Wang QZ, Zhang J, Cai YW, Cheng M and Gao HQ: Restoration of
mimecan expression by grape seed procyanidin B2 through regulation
of nuclear factor-kappaB in mice with diabetic nephropathy. Iran J
Kidney Dis. 10:325–331. 2016.PubMed/NCBI
|
19
|
Breast Cancer Linkage Consortium. Cancer
risks in BRCA2 mutation carriers. J Natl Cancer Inst. 91:1310–1316.
1999.PubMed/NCBI View Article : Google Scholar
|
20
|
Chen B, Li Y, Liu Y and Xu Z: circLRP6
regulates high glucose-induced proliferation, oxidative stress, ECM
accumulation, and inflammation in mesangial cells. J Cell Physiol.
234:21249–21259. 2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Fan J, Liu H, Wang J, Zeng J, Tan Y, Wang
Y, Yu X, Li W, Wang P, Yang Z and Dai X: Procyanidin B2 improves
endothelial progenitor cell function and promotes wound healing in
diabetic mice via activating Nrf2. J Cell Mol Med. 25:652–665.
2021.PubMed/NCBI View Article : Google Scholar
|
22
|
Yin M, Zhang P, Yu F, Zhang Z, Cai Q, Lu
W, Li B, Qin W, Cheng M, Wang H and Gao H: Grape seed procyanidin
B2 ameliorates hepatic lipid metabolism disorders in db/db mice.
Mol Med Rep. 16:2844–2850. 2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Zhang Z, Li BY, Li XL, Cheng M, Yu F, Lu
WD, Cai Q, Wang JF, Zhou RH, Gao HQ and Shen L: Proteomic analysis
of kidney and protective effects of grape seed procyanidin B2 in
db/db mice indicate MFG-E8 as a key molecule in the development of
diabetic nephropathy. Biochim Biophys Acta. 1832:805–816.
2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Li D, Zhao T, Meng J, Jing Y, Jia F and He
P: Procyanidin B2 inhibits high glucose-induced
epithelial-mesenchymal transition in HK-2 human renal proximal
tubular epithelial cells. Mol Med Rep. 12:8148–8154.
2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Adebiyi A, Soni H, John TA and Yang F:
Lipid rafts are required for signal transduction by angiotensin II
receptor type 1 in neonatal glomerular mesangial cells. Exp Cell
Res. 324:92–104. 2014.PubMed/NCBI View Article : Google Scholar
|
26
|
Guan TH, Chen G, Gao B, Janssen MR,
Uttarwar L, Ingram AJ and Krepinsky JC: Caveolin-1 deficiency
protects against mesangial matrix expansion in a mouse model of
type 1 diabetic nephropathy. Diabetologia. 56:2068–2077.
2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Moriyama T, Tsuruta Y, Shimizu A, Itabashi
M, Takei T, Horita S, Uchida K and Nitta K: The significance of
caveolae in the glomeruli in glomerular disease. J Clin Pathol.
64:504–509. 2011.PubMed/NCBI View Article : Google Scholar
|
28
|
Li CD, Zhao JY, Chen JL, Lu JH, Zhang MB,
Huang Q, Cao YN, Jia GL, Tao YX, Li J and Cao H: Mechanism of the
JAK2/STAT3-CAV-1-NR2B signaling pathway in painful diabetic
neuropathy. Endocrine. 64:55–66. 2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Akaishi T, Abe M, Okuda H, Ishizawa K, Abe
T, Ishii T and Ito S: High glucose level and angiotensin II type 1
receptor stimulation synergistically amplify oxidative stress in
renal mesangial cells. Sci Rep. 9(5214)2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Spencer NY and Engelhardt JF: The basic
biology of redoxosomes in cytokine-mediated signal transduction and
implications for disease-specific therapies. Biochemistry.
53:1551–1564. 2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Oakley FD, Abbott D, Li Q and Engelhardt
JF: Signaling components of redox active endosomes: The
redoxosomes. Antioxid Redox Signal. 11:1313–1333. 2009.PubMed/NCBI View Article : Google Scholar
|
32
|
Dong J, Ding L, Wang L, Yang Z, Wang Y,
Zang Y, Cao X and Tang L: Effects of bradykinin on proliferation,
apoptosis, and cycle of glomerular mesangial cells via the
TGF-β1/Smad signaling pathway. Turk J Biol. 45:17–25.
2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Ma TT and Meng XM: TGF-β/Smad and renal
fibrosis. Adv Exp Med Biol. 1165:347–364. 2019.PubMed/NCBI View Article : Google Scholar
|