1
|
Sethi NJ, Safi S, Korang SK, Hróbjartsson
A, Skoog M, Gluud C and Jakobsen JC: Antibiotics for secondary
prevention of coronary heart disease. Cochrane Database Syst Rev.
2(CD003610)2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Stolpe S, Kowall B and Stang A: Decline of
coronary heart disease mortality is strongly effected by changing
patterns of underlying causes of death: An analysis of mortality
data from 27 countries of the WHO European region 2000 and 2013.
Eur J Epidemiol. 36:57–68. 2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Woodruff RC, Casper M, Loustalot F and
Vaughan AS: Unequal local progress towards healthy people 2020
objectives for stroke and coronary heart disease mortality. Stroke.
52:e229–e232. 2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Aday AW and Matsushita K: Epidemiology of
peripheral artery disease and polyvascular disease. Circ Res.
128:1818–1832. 2021.PubMed/NCBI View Article : Google Scholar
|
5
|
Hagström E, Norlund F, Stebbins A,
Armstrong PW, Chiswell K, Granger CB, López-Sendón J, Pella D,
Soffer J, Sy R, et al: Psychosocial stress and major cardiovascular
events in patients with stable coronary heart disease. J Intern
Med. 283:83–92. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Saito Y and Kobayashi Y: Update on
antithrombotic therapy after percutaneous coronary intervention.
Intern Med. 59:311–321. 2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Bakaeen FG, Gaudino M, Whitman G, Doenst
T, Ruel M, Taggart DP, Stulak JM, Benedetto U, Anyanwu A, Chikwe J,
et al: 2021: The American association for thoracic surgery expert
consensus document: Coronary artery bypass grafting in patients
with ischemic cardiomyopathy and heart failure. J Thorac Cardiovasc
Surg. 162:829–850.e1. 2021.PubMed/NCBI View Article : Google Scholar
|
8
|
Chiang CY, Choi KC, Ho KM and Yu SF:
Effectiveness of nurse-led patient-centered care behavioral risk
modification on secondary prevention of coronary heart disease: A
systematic review. Int J Nurs Stud. 84:28–39. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Zheng J, Chen P, Zhong J, Cheng Y, Chen H,
He Y and Chen C: HIF-1α in myocardial ischemia-reperfusion injury
(review). Mol Med Rep. 23(352)2021.PubMed/NCBI View Article : Google Scholar
|
10
|
Shen Y, Liu X, Shi J and Wu X: Involvement
of Nrf2 in myocardial ischemia and reperfusion injury. Int J Biol
Macromol. 125:496–502. 2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Xiang M, Lu Y, Xin L, Gao J, Shang C,
Jiang Z, Lin H, Fang X, Qu Y, Wang Y, et al: Role of Oxidative
stress in reperfusion following myocardial ischemia and its
treatments. Oxid Med Cell Longev. 2021(6614009)2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Han S and Yang Y: Interleukin-32: Frenemy
in cancer? BMB Rep. 52:165–174. 2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Kang JY and Kim KE: Prognostic value of
interleukin-32 expression and its correlation with the infiltration
of natural killer cells in cutaneous melanoma. J Clin Med.
10(4691)2021.PubMed/NCBI View Article : Google Scholar
|
14
|
Yao Q, Wang B, Jia X, Li Q, Yao W and
Zhang JA: Increased human interleukin-32 expression is related to
disease activity of graves' disease. Front Endocrinol (Lausanne).
10(613)2019.PubMed/NCBI View Article : Google Scholar
|
15
|
de Albuquerque R, Komsi E, Starskaia I,
Ullah U and Lahesmaa R: The role of interleukin-32 in autoimmunity.
Scand J Immunol. 93(e13012)2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Netea MG, Lewis EC, Azam T, Joosten LA,
Jaekal J, Bae SY, Dinarello CA and Kim SH: Interleukin-32 induces
the differentiation of monocytes into macrophage-like cells. Proc
Natl Acad Sci USA. 105:3515–3520. 2008.PubMed/NCBI View Article : Google Scholar
|
17
|
Joosten LA, Netea MG, Kim SH, Yoon DY,
Oppers-Walgreen B, Radstake TR, Barrera P, van de Loo FA, Dinarello
CA and van den Berg WB: IL-32, a proinflammatory cytokine in
rheumatoid arthritis. Proc Natl Acad Sci USA. 103:3298–3303.
2006.PubMed/NCBI View Article : Google Scholar
|
18
|
Dinarello CA and Kim SH: IL-32, a novel
cytokine with a possible role in disease. Ann Rheum Dis. 65 (Suppl
3):iii61–iii64. 2006.PubMed/NCBI View Article : Google Scholar
|
19
|
Cheng Y, Cheng L, Gao X, Chen S, Wu P,
Wang C and Liu Z: Covalent modification of Keap1 at Cys77 and
Cys434 by pubescenoside a suppresses oxidative stress-induced NLRP3
inflammasome activation in myocardial ischemia-reperfusion injury.
Theranostics. 11:861–877. 2021.PubMed/NCBI View Article : Google Scholar
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
21
|
Teo KK and Rafiq T: Cardiovascular risk
factors and prevention: A perspective from developing countries.
Can J Cardiol. 37:733–743. 2021.PubMed/NCBI View Article : Google Scholar
|
22
|
Gagno G, Ferro F, Fluca AL, Janjusevic M,
Rossi M, Sinagra G, Beltrami AP, Moretti R and Aleksova A: From
brain to heart: Possible role of amyloid-β in ischemic heart
disease and ischemia-reperfusion injury. Int J Mol Sci.
21(9655)2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Qin Z, Shen S, Qu K, Nie Y and Zhang H:
Mild hypothermia in rat with acute myocardial ischaemia-reperfusion
injury complicating severe sepsis. J Cell Mol Med. 25:6448–6454.
2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Tsai CL, Chiu YM, Lee YJ, Hsieh CT, Shieh
DC, Tsay GJ, Bau DT and Wu YY: Interleukin-32 plays an essential
role in human calcified aortic valve cells. Eur Cytokine Netw.
29:36–47. 2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Mann JK, Shen J and Park S: Enhancement of
muramyl dipeptide-dependent NOD2 activity by a self-derived
peptide. J Cell Biochem. 118:1227–1238. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Okanishi H, Hayashi K, Sakamoto Y, Sano T,
Maruyama H, Kagawa Y and Watari T: NOD2 mRNA expression and
NFkappaB activation in dogs with lymphocytic plasmacytic colitis. J
Vet Intern Med. 27:439–444. 2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhang Y, Murugesan P, Huang K and Cai H:
NADPH oxidases and oxidase crosstalk in cardiovascular diseases:
Novel therapeutic targets. Nat Rev Cardiol. 17:170–194.
2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Cadenas S: ROS and redox signaling in
myocardial ischemia-reperfusion injury and cardioprotection. Free
Radic Biol Med. 117:76–89. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Huang W, Xiong Y, Chen Y, Cheng Y and Wang
R: NOX2 is involved in CB2-mediated protection against lung
ischemia-reperfusion injury in mice. Int J Clin Exp Pathol.
13:277–285. 2020.PubMed/NCBI
|
30
|
Pejenaute Á, Cortés A, Marqués J, Montero
L, Beloqui Ó, Fortuño A, Martí A, Orbe J and Zalba G: NADPH oxidase
overactivity underlies telomere shortening in human
atherosclerosis. Int J Mol Sci. 21(1434)2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Sirker A, Murdoch CE, Protti A, Sawyer GJ,
Santos CX, Martin D, Zhang X, Brewer AC, Zhang M and Shah AM:
Cell-specific effects of Nox2 on the acute and chronic response to
myocardial infarction. J Mol Cell Cardiol. 98:11–17.
2016.PubMed/NCBI View Article : Google Scholar
|
32
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N and
Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation,
differentiation, migration, senescence and apoptosis. J Recept
Signal Transduct Res. 35:600–604. 2015.PubMed/NCBI View Article : Google Scholar
|
33
|
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and
Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med.
19:1997–2007. 2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Niogret C, Birchmeier W and Guarda G:
SHP-2 in lymphocytes' cytokine and inhibitory receptor signaling.
Front Immunol. 10(2468)2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Lavoie H, Gagnon J and Therrien M: ERK
signalling: A master regulator of cell behaviour, life and fate.
Nat Rev Mol Cell Biol. 21:607–632. 2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Hong JT, Son DJ, Lee CK, Yoon DY, Lee DH
and Park MH: Interleukin 32, inflammation and cancer. Pharmacol
Ther. 174:127–137. 2017.PubMed/NCBI View Article : Google Scholar
|