1
|
Yi Y, Li L, Song F, Li P, Chen M, Ni S,
Zhang H, Zhou H, Zeng S and Jiang H: L-tetrahydropalmatine reduces
oxaliplatin accumulation in the dorsal root ganglion and
mitochondria through selectively inhibiting the
transporter-mediated uptake thereby attenuates peripheral
neurotoxicity. Toxicology. 459(152853)2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Kang L, Tian Y, Xu S and Chen H:
Oxaliplatin-induced peripheral neuropathy: Clinical features,
mechanisms, prevention and treatment. J Neurol. 268:3269–3282.
2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Takeshita E, Ishibashi K, Koda K, Oda N,
Yoshimatsu K, Sato Y, Oya M, Yamaguchi S, Nakajima H, Momma T, et
al: The updated five-year overall survival and long-term
oxaliplatin-related neurotoxicity assessment of the FACOS study.
Surg Today. 51:1309–1319. 2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Furgała-Wojas A, Kowalska M, Nowaczyk A,
Fijałkowski Ł and Sałat K: Comparison of bromhexine and its active
metabolite-ambroxol as potential analgesics reducing
oxaliplatin-induced neuropathic pain-pharmacodynamic and molecular
docking studies. Curr Drug Metab. 21:548–561. 2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Kong VKF and Irwin MG: Adjuvant analgesics
in neuropathic pain. Eur J Anaesthesiol. 26:96–100. 2009.PubMed/NCBI View Article : Google Scholar
|
6
|
Tuttle AH, Tohyama S, Ramsay T, Kimmelman
J, Schweinhardt P, Bennett GJ and Mogil JS: Increasing placebo
responses over time in U.S. clinical trials of neuropathic pain.
Pain. 156:2616–2626. 2015.PubMed/NCBI View Article : Google Scholar
|
7
|
Wang J, Zhang XS, Tao R, Zhang J, Liu L,
Jiang YH, Ma SH, Song LX and Xia LJ: Upregulation of CX3CL1
mediated by NF-κB activation in dorsal root ganglion contributes to
peripheral sensitization and chronic pain induced by oxaliplatin
administration. Mol Pain. 13(1744806917726256)2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Shigematsu N, Kawashiri T, Kobayashi D,
Shimizu S, Mine K, Hiromoto S, Uchida M, Egashira N and Shimazoe T:
Neuroprotective effect of alogliptin on oxaliplatin-induced
peripheral neuropathy in vivo and in vitro. Sci Rep.
10(6734)2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Zhang P, Li X, Hu D, Lai Q, Wang Y, Ma X,
Xu Q, Li W, Huang J and He J: Peripheral neural interface. Adv Exp
Med Biol. 1101:91–122. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Zhang X, Guan Z, Wang X, Sun D, Wang D, Li
Y, Pei B, Ye M, Xu J and Yue X: Curcumin alleviates
oxaliplatin-induced peripheral neuropathic pain through inhibiting
oxidative stress-mediated activation of NF-κB and mitigating
inflammation. Biol Pharm Bull. 43:348–355. 2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Menyhárt Á, Frank R, Farkas AE, Süle Z,
Varga VÉ, Nyúl-Tóth Á, Meiller A, Ivánkovits-Kiss O, Lemale CL,
Szabó Í, et al: Malignant astrocyte swelling and impaired glutamate
clearance drive the expansion of injurious spreading depolarization
foci. J Cereb Blood Flow Metab. 24(271678X211040056)2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Li D, Liu N, Zhao HH, Zhang X, Kawano H,
Liu L, Zhao L and Li HP: Interactions between Sirt1 and MAPKs
regulate astrocyte activation induced by brain injury in vitro and
in vivo. J Neuroinflammation. 14(67)2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Eto K, Kim SK, Takeda I and Nabekura J:
The roles of cortical astrocytes in chronic pain and other brain
pathologies. Neurosci Res. 126:3–8. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Shaito A, Posadino AM, Younes N, Hasan H,
Halabi S, Alhababi D, Al-Mohannadi A, Abdel-Rahman WM, Eid AH,
Nasrallah GK and Pintus G: Potential adverse effects of
resveratrol: A literature review. Int J Mol Sci.
21(2084)2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Salehi B, Mishra AP, Nigam M, Sener B,
Kilic M, Sharifi-Rad M, Fokou PVT, Martins N and Sharifi-Rad J:
Resveratrol: A double-edged sword in health benefits. Biomedicines.
6(91)2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Wilson T, Knight TJ, Beitz DC, Lewis DS
and Engen RL: Resveratrol promotes atherosclerosis in
hypercholesterolemic rabbits. Life Sci. 59:PL15–PL21.
1996.PubMed/NCBI View Article : Google Scholar
|
17
|
Xu D, Li Y, Zhang B, Wang Y, Liu Y, Luo Y,
Niu W, Dong M, Liu M, Dong H, et al: Resveratrol alleviate hypoxic
pulmonary hypertension via anti-inflammation and anti-oxidant
pathways in rats. Int J Med Sci. 13:942–954. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Ma Y, Liu S, Shu H, Crawford J, Xing Y and
Tao F: Resveratrol alleviates temporomandibular joint inflammatory
pain by recovering disturbed gut microbiota. Brain Behav Immun.
87:455–464. 2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Tao L, Ding Q, Gao C and Sun X:
Resveratrol attenuates neuropathic pain through balancing
pro-inflammatory and anti-inflammatory cytokines release in mice.
Int Immunopharmacol. 34:165–172. 2016.PubMed/NCBI View Article : Google Scholar
|
20
|
Wang Y, Shi Y, Huang Y, Liu W, Cai G,
Huang S, Zeng Y, Ren S, Zhan H and Wu W: Resveratrol mediates
mechanical allodynia through modulating inflammatory response via
the TREM2-autophagy axis in SNI rat model. J Neuroinflammation.
17(311)2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Hao M, Tang Q, Wang B, Li Y, Ding J, Li M,
Xie M and Zhu H: Resveratrol suppresses bone cancer pain in rats by
attenuating inflammatory responses through the AMPK/Drp1 signaling.
Acta Biochim Biophys Sin (Shanghai). 52:231–240. 2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Ding H, Chen J, Su M, Lin Z, Zhan H, Yang
F, Li W, Xie J, Huang Y, Liu X, et al: BDNF promotes activation of
astrocytes and microglia contributing to neuroinflammation and
mechanical allodynia in cyclophosphamide-induced cystitis. J
Neuroinflammation. 17(19)2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Hylden JL and Wilcox GL: Intrathecal
morphine in mice: A new technique. Eur J Pharmacol. 67:313–316.
1980.PubMed/NCBI View Article : Google Scholar
|
24
|
Luo H, Liu L, Zhao JJ, Mi XF, Wang QJ and
Yu M: Effects of oxaliplatin on inflammation and intestinal floras
in rats with colorectal cancer. Eur Rev Med Pharmacol Sci.
24:10542–10549. 2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Song S, Guo R, Mehmood A, Zhang L, Yin B,
Yuan C, Zhang H, Guo L and Li B: Liraglutide attenuate central
nervous inflammation and demyelination through AMPK and
pyroptosis-related NLRP3 pathway. CNS Neurosci Ther. 28:422–434.
2022.PubMed/NCBI View Article : Google Scholar
|
26
|
Matsuda M, Huh Y and Ji RR: Roles of
inflammation, neurogenic inflammation, and neuroinflammation in
pain. J Anesth. 33:131–139. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Austin PJ, Wu A and Moalem-Taylor G:
Chronic constriction of the sciatic nerve and pain hypersensitivity
testing in rats. J Vis Exp. 13(3393)2012.PubMed/NCBI View
Article : Google Scholar
|
29
|
Forstenpointner J, Oberlojer VC,
Naleschinski D, Höper J, Helfert SM, Binder A, Gierthmühlen J and
Baron R: A-fibers mediate cold hyperalgesia in patients with
oxaliplatin-induced neuropathy. Pain Pract. 18:758–767.
2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Lee JH and Kim W: The role of satellite
glial cells, astrocytes and microglia in oxaliplatin-induced
neuropathic pain. Biomedicines. 8(324)2020.PubMed/NCBI View Article : Google Scholar
|
31
|
DiAntonio A: Axon degeneration:
Mechanistic insights lead to therapeutic opportunities for the
prevention and treatment of peripheral neuropathy. Pain. 160 (Suppl
1):S17–S22. 2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Lu Y, Lin Y, Huang X, Wu S, Wei J and Yang
C: Oxaliplatin aggravates hepatic oxidative stress, inflammation
and fibrosis in a non-alcoholic fatty liver disease mouse model.
Int J Mol Med. 43:2398–2408. 2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Agnes JP, Santos VW, das Neves RN,
Gonçalves RM, Delgobo M, Girardi CS, Lückemeyer DD, Ferreira MA,
Macedo-Júnior SJ, Lopes SC, et al: Antioxidants improve
oxaliplatin-induced peripheral neuropathy in tumor-bearing mice
model: Role of spinal cord oxidative stress and inflammation. J
Pain Aug. 22:996–1013. 2021.PubMed/NCBI View Article : Google Scholar
|
34
|
Amić A, Marković Z, Marković JM, Jeremić
S, Lučić B and Amić D: Free radical scavenging and COX-2 inhibition
by simple colon metabolites of polyphenols: A theoretical approach.
Comput Biol Chem. 65:45–53. 2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Hellenbrand DJ, Quinn CM, Piper ZJ,
Morehouse CN, Fixel JA and Hanna AS: Inflammation after spinal cord
injury: A review of the critical timeline of signaling cues and
cellular infiltration. J Neuroinflammation. 18(284)2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Teixeira-Santos L, Albino-Teixeira A and
Pinho D: Neuroinflammation, oxidative stress and their interplay in
neuropathic pain: Focus on specialized pro-resolving mediators and
NADPH oxidase inhibitors as potential therapeutic strategies.
Pharmacol Res. 162(105280)2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Gebremedhn EG, Shortland PJ and Mahns DA:
The incidence of acute oxaliplatin-induced neuropathy and its
impact on treatment in the first cycle: A systematic review. BMC
Cancer. 18(410)2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Carothers AM, Davids JS, Damas BC and
Bertagnolli MM: Persistent cyclooxygenase-2 inhibition
downregulates NF-{kappa}B, resulting in chronic intestinal
inflammation in the min/+ mouse model of colon tumorigenesis.
Cancer Res. 70:4433–4442. 2010.PubMed/NCBI View Article : Google Scholar
|
39
|
Chen Z, Liu M, Liu X, Huang S, Li L, Song
B, Li H, Ren Q, Hu Z, Zhou Y and Qiao L: COX-2 regulates E-cadherin
expression through the NF-κB/Snail signaling pathway in gastric
cancer. Int J Mol Med. 32:93–100. 2013.PubMed/NCBI View Article : Google Scholar
|
40
|
Song Q, Feng YB, Wang L, Shen J, Li Y, Fan
C, Wang P and Yu SY: COX-2 inhibition rescues depression-like
behaviors via suppressing glial activation, oxidative stress and
neuronal apoptosis in rats. Neuropharmacology.
160(107779)2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Meng T, Xiao D, Muhammed A, Deng J, Chen L
and He J: Anti-inflammatory action and mechanisms of resveratrol.
Molecules. 26(229)2021.PubMed/NCBI View Article : Google Scholar
|
42
|
Shamsara J and Shahir-Sadr A: Developing a
CoMSIA Model for Inhibition of COX-2 by resveratrol derivatives.
Iran J Pharm Res. 15:459–469. 2016.PubMed/NCBI
|
43
|
Ito J, Shirasuna K, Kuwayama T and Iwata
H: Resveratrol treatment increases mitochondrial biogenesis and
improves viability of porcine germinal-vesicle stage
vitrified-warmed oocytes. Cryobiology. 93:37–43. 2020.PubMed/NCBI View Article : Google Scholar
|