1
|
Samsu N: Diabetic nephropathy: Challenges
in pathogenesis, diagnosis, and treatment. Biomed Res Int.
2021(1497449)2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Sagoo MK and Gnudi L: Diabetic
nephropathy: An overview. Methods Mol Biol. 2067:3–7.
2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Zhang XX, Kong J and Yun K: Prevalence of
diabetic nephropathy among patients with type 2 diabetes Mellitus
in China: A meta-analysis of observational studies. J Diabetes Res.
2020(2315607)2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Selby NM and Taal MW: An updated overview
of diabetic nephropathy: Diagnosis, prognosis, treatment goals and
latest guidelines. Diabetes Obes Metab. 22 (Suppl 1):S3–S15.
2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Yamazaki T, Mimura I, Tanaka T and Nangaku
M: Treatment of diabetic kidney disease: Current and future.
Diabetes Metab J. 45:11–26. 2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Agarwal R: Pathogenesis of diabetic
nephropathy. Chronic kidney disease and type 2 diabetes. Arlington
(VA) American Diabetes Association 2021.
|
7
|
Cao Z and Cooper ME: Pathogenesis of
diabetic nephropathy. J Diabetes Investig. 2:243–247.
2011.PubMed/NCBI View Article : Google Scholar
|
8
|
Yu SM and Bonventre JV: Acute kidney
injury and progression of diabetic kidney disease. Adv Chronic
Kidney Dis. 25:166–180. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Chen AJ, Zhou G, Juan T, Colicos SM,
Cannon JP, Cabriera-Hansen M, Meyer CF, Jurecic R, Copeland NG,
Gilbert DJ, et al: The dual specificity JKAP specifically activates
the c-Jun N-terminal kinase pathway. J Biol Chem. 277:36592–36601.
2002.PubMed/NCBI View Article : Google Scholar
|
10
|
Sekine Y, Ikeda O, Hayakawa Y, Tsuji S,
Imoto S, Aoki N, Sugiyama K and Matsuda T: DUSP22/LMW-DSP2
regulates estrogen receptor-alpha-mediated signaling through
dephosphorylation of Ser-118. Oncogene. 26:6038–6049.
2007.PubMed/NCBI View Article : Google Scholar
|
11
|
Li JP, Yang CY, Chuang HC, Lan JL, Chen
DY, Chen YM, Wang X, Chen AJ, Belmont JW and Tan TH: The
phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and
autoimmunity by inactivating Lck. Nat Commun.
5(3618)2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Li J, Jin S, Barati MT, Rane S, Lin Q, Tan
Y, Cai L and Rane MJ: ERK and p38 MAPK inhibition controls NF-E2
degradation and profibrotic signaling in renal proximal tubule
cells. Life Sci. 287(120092)2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Grynberg K, Ma FY and Nikolic-Paterson DJ:
The JNK signaling pathway in renal fibrosis. Front Physiol.
8(829)2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Xiao L, Chen A, Gao Q, Xu B, Guo X and
Guan T: Pentosan polysulfate ameliorates fibrosis and inflammation
markers in SV40 MES13 cells by suppressing activation of PI3K/AKT
pathway via miR-446a-3p. BMC Nephrol. 23(105)2022.PubMed/NCBI View Article : Google Scholar
|
15
|
Wu R, Niu Z, Ren G, Ruan L and Sun L:
CircSMAD4 alleviates high glucose-induced inflammation,
extracellular matrix deposition and apoptosis in mouse glomerulus
mesangial cells by relieving miR-377-3p-mediated BMP7 inhibition.
Diabetol Metab Syndr. 13(137)2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Chen Z, Gao H, Wang L, Ma X, Tian L, Zhao
W, Li K, Zhang Y, Ma F, Lu J, et al: Farrerol alleviates high
glucose-induced renal mesangial cell injury through the
ROS/Nox4/ERK1/2 pathway. Chem Biol Interact.
316(108921)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Zhao L, Chen H, Zeng Y, Yang K, Zhang R,
Li Z, Yang T and Ruan H: Circular RNA circ_0000712 regulates high
glucose-induced apoptosis, inflammation, oxidative stress, and
fibrosis in (DN) by targeting the miR-879-5p/SOX6 axis. Endocr J.
68:1155–1164. 2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Zhang P, Sun Y, Peng R, Chen W, Fu X,
Zhang L, Peng H and Zhang Z: Long non-coding RNA Rpph1 promotes
inflammation and proliferation of mesangial cells in diabetic
nephropathy via an interaction with Gal-3. Cell Death Dis.
10(526)2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
20
|
Aggarwal M, Saxena R, Asif N, Sinclair E,
Tan J, Cruz I, Berry D, Kallakury B, Pham Q, Wang TTY and Chung FL:
p53 mutant-type in human prostate cancer cells determines the
sensitivity to phenethyl isothiocyanate induced growth inhibition.
J Exp Clin Cancer Res. 38(307)2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Huang CY and Tan TH: DUSPs, to MAP kinases
and beyond. Cell Biosci. 2(24)2012.PubMed/NCBI View Article : Google Scholar
|
22
|
Huang F, Sheng XX and Zhang HJ: DUSP26
regulates podocyte oxidative stress and fibrosis in a mouse model
with diabetic nephropathy through the mediation of ROS. Biochem
Biophys Res Commun. 515:410–416. 2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Guo H, Jian Z, Liu H, Cui H, Deng H, Fang
J, Zuo Z, Wang X, Zhao L, Geng Y, et al: TGF-β1-induced EMT
activation via both Smad-dependent and MAPK signaling pathways in
Cu-induced pulmonary fibrosis. Toxicol Appl Pharmacol.
418(115500)2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Chuang HC and Tan TH: MAP4K family kinases
and DUSP family phosphatases in T-Cell signaling and systemic lupus
erythematosus. Cells. 8(1433)2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Fang Y, Tian X, Bai S, Fan J, Hou W, Tong
H and Li D: Autologous transplantation of adipose-derived
mesenchymal stem cells ameliorates streptozotocin-induced diabetic
nephropathy in rats by inhibiting oxidative stress,
pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int
J Mol Med. 30:85–92. 2012.PubMed/NCBI View Article : Google Scholar
|
26
|
Li M, Wang L, Shi DC, Foo JN, Zhong Z,
Khor CC, Lanzani C, Citterio L, Salvi E, Yin PR, et al: Genome-Wide
meta-analysis identifies three novel susceptibility loci and
reveals ethnic heterogeneity of genetic susceptibility for IgA
nephropathy. J Am Soc Nephrol. 31:2949–2963. 2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Chuang HC, Chen YM, Hung WT, Li JP, Chen
DY, Lan JL and Tan TH: Downregulation of the phosphatase
JKAP/DUSP22 in T cells as a potential new biomarker of systemic
lupus erythematosus nephritis. Oncotarget. 7:57593–57605.
2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Yue J and Lopez JM: Understanding MAPK
signaling pathways in apoptosis. Int J Mol Sci.
21(2346)2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Shen Y, Teng L, Qu Y, Liu J, Zhu X, Chen
S, Yang L, Huang Y, Song Q and Fu Q: Anti-proliferation and
anti-inflammation effects of corilagin in rheumatoid arthritis by
downregulating NF-κB and MAPK signaling pathways. J Ethnopharmacol.
284(114791)2022.PubMed/NCBI View Article : Google Scholar
|
30
|
Loeffler I and Wolf G:
Epithelial-to-mesenchymal transition in diabetic nephropathy: Fact
or fiction? Cells. 4:631–652. 2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Xu M, Wang S, Wang Y, Wu H, Frank JA,
Zhang Z and Luo J: Role of p38ү MAPK in regulation of EMT and
cancer stem cells. Biochim Biophys Acta Mol Basis Dis.
1864:3605–3617. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Wu C, Zhou XX, Li JZ, Qiang HF, Wang Y and
Li G: Pretreatment of cardiac progenitor cells with bradykinin
attenuates H2O2-induced cell apoptosis and
improves cardiac function in rats by regulating autophagy. Stem
Cell Res Ther. 12(437)2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Du X, Wang X, Cui K and Chen Y, Zhang C,
Yao K, Hao Y and Chen Y: Tanshinone IIA and Astragaloside IV
Inhibit miR-223/JAK2/STAT1 signalling pathway to alleviate
lipopolysaccharide-induced damage in nucleus pulposus cells. Dis
Markers. 2021(6554480)2021.PubMed/NCBI View Article : Google Scholar
|
34
|
Wada J and Makino H: Inflammation and the
pathogenesis of diabetic nephropathy. Clin Sci (Lond). 124:139–152.
2013.PubMed/NCBI View Article : Google Scholar
|
35
|
Lim AK, Nikolic-Paterson DJ, Ma FY, Ozols
E, Thomas MC, Flavell RA, Davis RJ and Tesch GH: Role of MKK3-p38
MAPK signalling in the development of type 2 diabetes and renal
injury in obese db/db mice. Diabetologia. 52:347–358.
2009.PubMed/NCBI View Article : Google Scholar
|
36
|
Li A, Peng R, Sun Y, Liu H, Peng H and
Zhang Z: LincRNA 1700020I14Rik alleviates cell proliferation and
fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1α
signaling. Cell Death Dis. 9(461)2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Chen P, Yuan Y, Zhang T, Xu B, Gao Q and
Guan T: Pentosan polysulfate ameliorates apoptosis and inflammation
by suppressing activation of the p38 MAPK pathway in high
glucosetreated HK2 cells. Int J Mol Med. 41:908–914.
2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Yoon JJ, Lee HK, Kim HY, Han BH, Lee HS,
Lee YJ and Kang DG: Sauchinone protects renal mesangial cell
dysfunction against angiotensin II by improving renal fibrosis and
inflammation. Int J Mol Sci. 21(7003)2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Lv ZM, Wang Q, Wan Q, Lin JG, Hu MS, Liu
YX and Wang R: The role of the p38 MAPK signaling pathway in high
glucose-induced epithelial-mesenchymal transition of cultured human
renal tubular epithelial cells. PLoS One. 6(e22806)2011.PubMed/NCBI View Article : Google Scholar
|
40
|
Dong Q, Jie Y, Ma J, Li C, Xin T and Yang
D: Renal tubular cell death and inflammation response are regulated
by the MAPK-ERK-CREB signaling pathway under hypoxia-reoxygenation
injury. J Recept Signal Transduct Res. 39:383–391. 2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Ju A, Cho YC, Kim BR, Park SG, Kim JH, Kim
K, Lee J, Park BC and Cho S: Scaffold Role of DUSP22 in
ASK1-MKK7-JNK signaling pathway. PLoS One.
11(e0164259)2016.PubMed/NCBI View Article : Google Scholar
|
42
|
Kosanam H, Thai K, Zhang Y, Advani A,
Connelly KA, Diamandis EP and Gilbert RE: Diabetes induces lysine
acetylation of intermediary metabolism enzymes in the kidney.
Diabetes. 63:2432–2439. 2014.PubMed/NCBI View Article : Google Scholar
|