1
|
Weng JP and Bi Y: Epidemiological status
of chronic diabetic complications in China. Chin Med J (Engl).
128:3267–3269. 2015.PubMed/NCBI View Article : Google Scholar
|
2
|
Wang L, Gao P, Zhang M, Huang Z, Zhang D,
Deng Q, Li Y, Zhao Z, Qin X, Jin D, et al: Prevalence and ethnic
pattern of diabetes and prediabetes in China in 2013. JAMA.
317:2515–2523. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Cho NH, Shaw JE, Karuranga S, Huang Y, da
Rocha Fernandes JD, Ohlrogge AW and Malanda B: IDF diabetes Atlas:
Global estimates of diabetes prevalence for 2017 and projections
for 2045. Diabetes Res Clin Pract. 138:271–281. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Zaccardi F, Webb DR, Htike ZZ, Youssef D,
Khunti K and Davies MJ: Efficacy and safety of sodium-glucose
co-transporter-2 inhibitors in type 2 diabetes mellitus: Systematic
review and network meta-analysis. Diabetes Obes Metab. 18:783–794.
2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Hodrea J, Balogh DB, Hosszu A, Lenart L,
Besztercei B, Koszegi S, Sparding N, Genovese F, Wagner LJ, Szabo
AJ and Fekete A: Reduced O-GlcNAcylation and tubular hypoxia
contribute to the antifibrotic effect of SGLT2 inhibitor
dapagliflozin in the diabetic kidney. Am J Physiol Renal Physiol.
318:F1017–F1029. 2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Rådholm K, Figtree G, Perkovic V, Solomon
SD, Mahaffey KW, de Zeeuw D, Fulcher G, Barrett TD, Shaw W, Desai
M, et al: Canagliflozin and heart failure in type 2 diabetes
mellitus: Results from the CANVAS program. Circulation.
138:458–468. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Sattar N, McLaren J, Kristensen SL, Preiss
D and McMurray JJ: SGLT2 inhibition and cardiovascular events: Why
did EMPA-REG outcomes surprise and what were the likely mechanisms?
Diabetologia. 59:1333–1339. 2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Xue L, Feng X, Wang C, Zhang X, Sun W and
Yu K: Benazepril hydrochloride improves diabetic nephropathy and
decreases proteinuria by decreasing ANGPTL-4 expression. BMC
Nephrol. 18(307)2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Li H, Wang Y, Zhou Z, Tian F, Yang H and
Yan J: Combination of leflunomide and benazepril reduces renal
injury of diabetic nephropathy rats and inhibits high-glucose
induced cell apoptosis through regulation of NF-κB, TGF-β and
TRPC6. Ren Fail. 41:899–906. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Arab HH, Al-Shorbagy MY and Saad MA:
Activation of autophagy and suppression of apoptosis by
dapagliflozin attenuates experimental inflammatory bowel disease in
rats: Targeting AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways. Chem
Biol Interact. 335(109368)2021.PubMed/NCBI View Article : Google Scholar
|
11
|
Lin L, Hou G, Han D, Yin Y, Kang J and
Wang Q: Ursolic acid alleviates airway-vessel remodeling and muscle
consumption in cigarette smoke-induced emphysema rats. BMC Pulm
Med. 19(103)2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Yang Y, Zhang Z, Su K, Chen Z and Huang S:
Methodological study of streptozotocin-induced diabetic nephropathy
model in rats. West China Medicine. 20:299–300. 2005.
|
13
|
Chang TT and Chen JW: The role of
chemokines and chemokine receptors in diabetic nephropathy. Int J
Mol Sci. 21(3172)2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Scheen AJ: SGLT2 inhibitor empagliflozin
reduces renal outcomes and dampens the progressive reduction in
glomerular filtration rate in patients with type 2 diabetes and
antecedents of cardiovascular disease. Evid Based Med. 22:69–70.
2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Wang W, Li Z, Chen Y, Wu H, Zhang S and
Chen X: Prediction value of serum NGAL in the diagnosis and
prognosis of experimental acute and chronic kidney injuries.
Biomolecules. 10(981)2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Sifuentes-Franco S, Padilla-Tejeda DE,
Carrillo-Ibarra S and Miranda-Díaz AG: Oxidative stress, apoptosis,
and mitochondrial function in diabetic nephropathy. Int J
Endocrinol. 2018(1875870)2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Garcia FA, Rebouças JF, Balbino TQ, da
Silva TG, de Carvalho-Júnior CH, Cerqueira GS, Brito GA and Viana
GS: Pentoxifylline reduces the inflammatory process in diabetic
rats: Relationship with decreases of pro-inflammatory cytokines and
inducible nitric oxide synthase. J Inflamm (Lond).
12(33)2015.PubMed/NCBI View Article : Google Scholar
|
18
|
Navarro-González JF, Mora-Fernández C,
Muros de Fuentes M, Chahin J, Méndez ML, Gallego E, Macía M, del
Castillo N, Rivero A, Getino MA, et al: Effect of pentoxifylline on
renal function and urinary albumin excretion in patients with
diabetic kidney disease: The PREDIAN trial. J Am Soc Nephrol.
26:220–229. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Dimas GG, Didangelos TP and Grekas DM:
Matrix gelatinases in atherosclerosis and diabetic nephropathy:
Progress and challenges. Curr Vasc Pharmacol. 15:557–565.
2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Lu R and Liang G: Changes and significance
of serum homocysteine, uric acid and blood lipid levels in patients
with chronic heart failure. Hebei Med J. 39:2113–2116. 2017.
|
21
|
Zhao Huihui XD: The value of NT proBNP in
the evaluation of curative effect and prognosis of patients with
heart failure. Modern Instruments Med. 21:101–102. 2015.
|
22
|
Chang LH, Hwu CM, Chu CH, Lin YC, Huang
CC, You JY, Chen HS and Lin LY: The combination of soluble tumor
necrosis factor receptor type 1 and fibroblast growth factor 21
exhibits better prediction of renal outcomes in patients with type
2 diabetes mellitus. J Endocrinol Invest. 44:2609–2619.
2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Svensson M, Gorst-Rasmussen A, Schmidt EB,
Jorgensen KA and Christensen JH: NT-pro-BNP is an independent
predictor of mortality in patients with end-stage renal disease.
Clin Nephrol. 71:380–386. 2009.PubMed/NCBI View
Article : Google Scholar
|
24
|
Gagliardini E, Zoja C and Benigni A: Et
and diabetic nephropathy: Preclinical and clinical studies. Semin
Nephrol. 35:188–196. 2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Zou HH, Wang L, Zheng XX, Xu GS and Shen
Y: Endothelial cells secreted endothelin-1 augments diabetic
nephropathy via inducing extracellular matrix accumulation of
mesangial cells in ETBR(-/-) mice. Aging (Albany NY). 11:1804–1820.
2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Karasek D, Spurna J, Kubickova V,
Krystynik O, Cibickova L, Schovanek J and Goldmannova D:
Association of pigment epithelium derived factor with von
Willebrand factor and plasminogen activator inhibitor 1 in patients
with type 2 diabetes. Physiol Res. 68:409–418. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Favaloro EJ, Henry BM and Lippi G:
Increased VWF and decreased ADAMTS-13 in COVID-19: Creating a
milieu for (micro)thrombosis. Semin Thromb Hemost. 47:400–418.
2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Tang S, Wang X, Deng T, Ge H and Xiao X:
Identification of C3 as a therapeutic target for diabetic
nephropathy by bioinformatics analysis. Sci Rep.
10(13468)2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Ferrannini E, Seman L, Seewaldt-Becker E,
Hantel S, Pinnetti S and Woerle HJ: A phase IIb, randomized,
placebo-controlled study of the SGLT2 inhibitor empagliflozin in
patients with type 2 diabetes. Diabetes Obes Metab. 15:721–728.
2013.PubMed/NCBI View Article : Google Scholar
|
30
|
Stenlöf K, Cefalu WT, Kim KA, Alba M,
Usiskin K, Tong C, Canovatchel W and Meininger G: Efficacy and
safety of canagliflozin monotherapy in subjects with type 2
diabetes mellitus inadequately controlled with diet and exercise.
Diabetes Obes Metab. 15:372–382. 2013.PubMed/NCBI View Article : Google Scholar
|
31
|
Ferrannini E, Ramos SJ, Salsali A, Tang W
and List JF: Dapagliflozin monotherapy in type 2 diabetic patients
with inadequate glycemic control by diet and exercise: A
randomized, double-blind, placebo-controlled, phase 3 trial.
Diabetes Care. 33:2217–2224. 2010.PubMed/NCBI View Article : Google Scholar
|