1
|
Mok CC and Lau CS: Pathogenesis of
systemic lupus erythematosus. J Clin Pathol. 56:481–490.
2003.PubMed/NCBI View Article : Google Scholar
|
2
|
Mohan C and Putterman C: Genetics and
pathogenesis of systemic lupus erythematosus and lupus nephritis.
Nat Rev Nephrol. 11:329–341. 2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Cheng T, Ding S, Liu S, Li X, Tang X and
Sun L: Resolvin D1 improves the Treg/Th17 imbalance in systemic
lupus erythematosus through miR-30e-5p. Front Immunol.
12(668760)2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Wu S, Ji L, Fan X, Fang S, Bao J, Yuan X,
Fan Y and Xie G: Jieduquyuzishen prescription attenuates renal
fibrosis in MRL/lpr mice via inhibiting EMT and TGF-β1/Smad2/3
pathway. Evid Based Complement Alternat Med.
2022(4987323)2022.PubMed/NCBI View Article : Google Scholar
|
5
|
Li M, Yu D, Ni B and Hao F: Interleukin-1
receptor associated kinase 1 is a potential therapeutic target of
anti-inflammatory therapy for systemic lupus erythematosus. Mol
Immunol. 87:94–101. 2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Poissonnier A, Sanséau D, Le Gallo M,
Malleter M, Levoin N, Viel R, Morere L, Penna A, Blanco P, Dupuy A,
et al: CD95-mediated calcium signaling promotes T helper 17
trafficking to inflamed organs in lupus-prone mice. Immunity.
45:209–223. 2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Wang N and Tian B: Brain-derived
neurotrophic factor in autoimmune inflammatory diseases (review).
Exp Ther Med. 22(1292)2021.PubMed/NCBI View Article : Google Scholar
|
8
|
Shan J, Jin H and Xu Y: T cell metabolism:
A new perspective on Th17/Treg cell imbalance in systemic lupus
erythematosus. Front Immunol. 11(1027)2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Tenbrock K and Rauen T: T cell
dysregulation in SLE. Clin Immunol. 239(109031)2022.PubMed/NCBI View Article : Google Scholar
|
10
|
Kubo S, Nakayamada S, Yoshikawa M,
Miyazaki Y, Sakata K, Nakano K, Hanami K, Iwata S, Miyagawa I,
Saito K and Tanaka Y: Peripheral immunophenotyping identifies three
subgroups based on T cell heterogeneity in lupus patients.
Arthritis Rheumatol. 69:2029–2037. 2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Xiao JP, Wang DY, Wang XR, Yuan L, Hao L
and Wang DG: Increased ratio of Th17 cells to
SIGIRR+CD4+ T cells in peripheral blood of
patients with SLE is associated with disease activity. Biomed Rep.
9:339–344. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Mesquita D Jr, Kirsztajn GM, Franco MF,
Reis LA, Perazzio SF, Mesquita FV, Ferreira VDS, Andrade LEC and de
Souza AWS: CD4+ T helper cells and regulatory T cells in
active lupus nephritis: an imbalance towards a predominant Th1
response? Clin Exp Immunol. 191:50–59. 2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Rafael-Vidal C, Perez N, Altabas I, Garcia
S and Pego-Reigosa JM: Blocking IL-17: A promising strategy in the
treatment of systemic rheumatic diseases. Int J Mol Sci.
21(7100)2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang X, Qiao Y, Yang L, Song S, Han Y,
Tian Y, Ding M, Jin H, Shao F and Liu A: Leptin levels in patients
with systemic lupus erythematosus inversely correlate with
regulatory T cell frequency. Lupus. 26:1401–1406. 2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Liu B, Li J and Cairns MJ: Identifying
miRNAs, targets and functions. Brief Bioinform. 15:1–19.
2014.PubMed/NCBI View Article : Google Scholar
|
16
|
Lu Q, Wu R, Zhao M, Garcia-Gomez A and
Ballestar E: miRNAs as therapeutic targets in inflammatory disease.
Trends Pharmacol Sci. 40:853–865. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Schell SL and Rahman ZSM: miRNA-Mediated
control of B cell responses in immunity and SLE. Front Immunol.
12(683710)2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Zhang J, Liu Y and Shi G: The
circRNA-miRNA-mRNA regulatory network in systemic lupus
erythematosus. Clin Rheumatol. 40:331–339. 2021.PubMed/NCBI View Article : Google Scholar
|
19
|
Zhou S, Zhang J, Luan P, Ma Z, Dang J, Zhu
H, Ma Q, Wang Y and Huo Z: miR-183-5p is a potential molecular
marker of systemic lupus erythematosus. J Immunol Res.
2021(5547635)2021.PubMed/NCBI View Article : Google Scholar
|
20
|
Cheng T, Ding S, Liu S, Li Y and Sun L:
Human umbilical cord-derived mesenchymal stem cell therapy
ameliorates lupus through increasing CD4+ T cell
senescence via MiR-199a-5p/Sirt1/p53 axis. Theranostics.
11:893–905. 2021.PubMed/NCBI View Article : Google Scholar
|
21
|
Tu Y, Guo R, Li J, Wang S, Leng L, Deng J,
Bucala R and Lu L: MiRNA regulation of MIF in SLE and attenuation
of murine lupus nephritis with miR-654. Front Immunol.
10(2229)2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y,
Huang X, Zhou H, de Vries N, Tak PP, et al: MicroRNA-146A
contributes to abnormal activation of the type I interferon pathway
in human lupus by targeting the key signaling proteins. Arthritis
Rheum. 60:1065–1075. 2009.PubMed/NCBI View Article : Google Scholar
|
23
|
Luo X, Yang W, Ye DQ, Cui H, Zhang Y,
Hirankarn N, Qian X, Tang Y, Lau YL, de Vries N, et al: A
functional variant in microRNA-146a promoter modulates its
expression and confers disease risk for systemic lupus
erythematosus. PLoS Genet. 7(e1002128)2011.PubMed/NCBI View Article : Google Scholar
|
24
|
Fu HX, Fan XP, Li M, Liu MJ and Sun QL:
MiR-146a relieves kidney injury in mice with systemic lupus
erythematosus through regulating NF- κB pathway. Eur Rev Med
Pharmacol Sci. 23:7024–7032. 2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Ye X, Lu Q, Yang A, Rao J, Xie W, He C,
Wang W, Li H and Zhang Z: MiR-206 regulates the Th17/Treg ratio
during osteoarthritis. Mol Med. 27(64)2021.PubMed/NCBI View Article : Google Scholar
|
26
|
Qu X, Han J, Zhang Y, Wang Y, Zhou J, Fan
H and Yao R: MiR-384 regulates the Th17/Treg ratio during
experimental autoimmune encephalomyelitis pathogenesis. Front Cell
Neurosci. 11(88)2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Wang D, Huang S, Yuan X, Liang J, Xu R,
Yao G, Feng X and Sun L: The regulation of the Treg/Th17 balance by
mesenchymal stem cells in human systemic lupus erythematosus. Cell
Mol Immunol. 14:423–431. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Geng L, Tang X, Zhou K, Wang D, Wang S,
Yao G, Chen W, Gao X, Chen W, Shi S, et al: MicroRNA-663 induces
immune dysregulation by inhibiting TGF-β1 production in bone
marrow-derived mesenchymal stem cells in patients with systemic
lupus erythematosus. Cell Mol Immunol. 16:260–274. 2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Remuzzi G, Zoja C, Gagliardini E, Corna D,
Abbate M and Benigni A: Combining an antiproteinuric approach with
mycophenolate mofetil fully suppresses progressive nephropathy of
experimental animals. J Am Soc Nephrol. 10:1542–1549.
1999.PubMed/NCBI View Article : Google Scholar
|
30
|
Xiong Y, Xiong Y, Zhang H, Zhao Y, Han K,
Zhang J, Zhao D, Yu Z, Geng Z, Wang L, et al: hPMSCs-derived
exosomal miRNA-21 protects against aging-related oxidative damage
of CD4+ T cells by targeting the PTEN/PI3K-Nrf2 axis.
Front Immunol. 12(780897)2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Wang Y and Xiong Y, Zhang A, Zhao N, Zhang
J, Zhao D, Yu Z, Xu N, Yin Y, Luan X and Xiong Y: Oligosaccharide
attenuates aging-related liver dysfunction by activating Nrf2
antioxidant signaling. Food Sci Nutr. 8:3872–3881. 2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Wang Y, Zhao N and Xiong Y, Zhang J, Zhao
D, Yin Y, Song L, Yin Y, Wang J, Luan X and Xiong Y: Downregulated
recycling process but not de novo synthesis of glutathione limits
antioxidant capacity of erythrocytes in hypoxia. Oxid Med Cell
Longev. 2020(7834252)2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
34
|
Sui W, Liu F, Chen J, Ou M and Dai Y:
Microarray technology for analysis of microRNA expression in renal
biopsies of lupus nephritis patients. Methods Mol Biol.
1134:211–220. 2014.PubMed/NCBI View Article : Google Scholar
|
35
|
Thai TH, Patterson HC, Pham DH, Kis-Toth
K, Kaminski DA and Tsokos GC: Deletion of microRNA-155 reduces
autoantibody responses and alleviates lupus-like disease in the
Fas(lpr) mouse. Proc Natl Acad Sci USA. 110:20194–20199.
2013.PubMed/NCBI View Article : Google Scholar
|
36
|
Xia Y, Tao JH, Fang X, Xiang N, Dai XJ,
Jin L, Li XM, Wang YP and Li XP: MicroRNA-326 upregulates B cell
activity and autoantibody production in lupus disease of MRL/lpr
mice. Mol Ther Nucleic Acids. 11:284–291. 2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Zhu Y, Xue Z and Di L: Regulation of
MiR-146a and TRAF6 in the diagnose of lupus nephritis. Med Sci
Monit. 23:2550–2557. 2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Zheng CZ, Shu YB, Luo YL and Luo J: The
role of miR-146a in modulating TRAF6-induced inflammation during
lupus nephritis. Eur Rev Med Pharmacol Sci. 21:1041–1048.
2017.PubMed/NCBI
|
39
|
Cai Z, Wong CK, Dong J, Jiao D, Chu M,
Leung PC, Lau CBS, Lau CP, Tam LS and Lam CWK: Anti-inflammatory
activities of Ganoderma lucidum (Lingzhi) and San-Miao-San
supplements in MRL/lpr mice for the treatment of systemic lupus
erythematosus. Chin Med. 11(23)2016.PubMed/NCBI View Article : Google Scholar
|
40
|
Zickert A, Amoudruz P, Sundstrom Y,
Ronnelid J, Malmstrom V and Gunnarsson I: IL-17 and IL-23 in lupus
nephritis-association to histopathology and response to treatment.
BMC Immunol. 16(7)2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Talaat RM, Mohamed SF, Bassyouni IH and
Raouf AA: Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus
erythematosus (SLE) patients: Correlation with disease activity.
Cytokine. 72:146–53. 2015.PubMed/NCBI View Article : Google Scholar
|
42
|
Ohl K and Tenbrock K: Regulatory T cells
in systemic lupus erythematosus. Eur J Immunol. 45:344–355.
2015.PubMed/NCBI View Article : Google Scholar
|
43
|
Choi Y, Jung JH, Lee EG, Kim KM and Yoo
WH: 4-phenylbutyric acid mediates therapeutic effect in systemic
lupus erythematosus: Observations in an experimental murine lupus
model. Exp Ther Med. 21(460)2021.PubMed/NCBI View Article : Google Scholar
|
44
|
Sun F, Teng J, Yu P, Li W, Chang J and Xu
H: Involvement of TWEAK and the NF-κB signaling pathway in lupus
nephritis. Exp Ther Med. 15:2611–2619. 2018.PubMed/NCBI View Article : Google Scholar
|
45
|
Sun L, Zou LX, Han YC, Wu L, Chen T, Zhu
DD and Hu P: A20 overexpression exerts protective effects on
podocyte injury in lupus nephritis by downregulating UCH-L1. J Cell
Physiol: Feb 25, 2019 (Epub ahead of print).
|
46
|
Zhang H, Liu L and Li L:
Lentivirus-mediated knockdown of FcgammaRI (CD64) attenuated lupus
nephritis via inhibition of NF-κB regulating NLRP3 inflammasome
activation in MRL/lpr mice. J Pharmacol Sci. 137:342–349.
2018.PubMed/NCBI View Article : Google Scholar
|
47
|
Cui C, Zhang D, Sun K, Li H, Xu L, Lin G,
Guo Y, Hu J, Chen J, Nong L, et al: Propofol maintains Th17/Treg
cell balance and reduces inflammation in rats with traumatic brain
injury via the miR1453p/NFATc2/NF-κB axis. Int J Mol Med.
48(135)2021.PubMed/NCBI View Article : Google Scholar
|
48
|
Chen C, Hu N, Wang J, Xu L, Jia XL, Fan X,
Shi JX, Chen F, Tu Y, Wang YW and Li XH: Umbilical cord mesenchymal
stem cells promote neurological repair after traumatic brain injury
through regulating Treg/Th17 balance. Brain Res.
1775(147711)2022.PubMed/NCBI View Article : Google Scholar
|
49
|
Napetschnig J and Wu H: Molecular basis of
NF-κB signaling. Annu Rev Biophys. 42:443–468. 2013.PubMed/NCBI View Article : Google Scholar
|
50
|
Dong C, Zhou Q, Fu T, Zhao R, Yang J, Kong
X, Zhang Z, Sun C, Bao Y, Ge X, et al: Circulating exosomes
derived-miR-146a from systemic lupus erythematosus patients
regulates senescence of mesenchymal stem cells. Biomed Res Int.
2019(6071308)2019.PubMed/NCBI View Article : Google Scholar
|
51
|
Meng Q, Liang C, Hua J, Zhang B, Liu J,
Zhang Y, Wei M, Yu X, Xu J and Shi S: A miR-146a-5p/TRAF6/NF-kB p65
axis regulates pancreatic cancer chemoresistance: Functional
validation and clinical significance. Theranostics. 10:3967–3979.
2020.PubMed/NCBI View Article : Google Scholar
|
52
|
Liu X, Liu B, Li R, Wang F, Wang N, Zhang
M, Bai Y, Wu J, Liu L, Han D, et al: miR-146a-5p plays an oncogenic
role in NSCLC via suppression of TRAF6. Front Cell Dev Biol.
8(847)2020.PubMed/NCBI View Article : Google Scholar
|