1
|
Moley KH and Schreiber JR: Ovarian
follicular growth, ovulation and atresia. Endocrine, paracrine and
autocrine regulation. Adv Exp Med Biol. 377:103–119.
1995.PubMed/NCBI View Article : Google Scholar
|
2
|
Manabe N, Goto Y, Matsuda-Minehata F,
Inoue N, Maeda A, Sakamaki K and Miyano T: Regulation mechanism of
selective atresia in porcine follicles: Regulation of granulosa
cell apoptosis during atresia. J Reprod Dev. 50:493–514.
2004.PubMed/NCBI View Article : Google Scholar
|
3
|
Ma L, Tang X, Guo S, Liang M, Zhang B and
Jiang Z: miRNA-21-3p targeting of FGF2 suppresses autophagy of
bovine ovarian granulosa cells through AKT/mTOR pathway.
Theriogenology. 157:226–237. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Driancourt MA, Gibson WR and Cahill LP:
Follicular dynamics throughout the oestrous cycle in sheep. A
review. Reprod Nutr Dev (1980). 25:1–15. 1985.PubMed/NCBI View Article : Google Scholar
|
5
|
Matsuda F, Inoue N, Manabe N and Ohkura S:
Follicular growth and atresia in mammalian ovaries: Regulation by
survival and death of granulosa cells. J Reprod Dev. 58:44–50.
2012.PubMed/NCBI View Article : Google Scholar
|
6
|
Webb R, Nicholas B, Gong JG, Campbell BK,
Gutierrez CG, Garverick HA and Armstrong DG: Mechanisms regulating
follicular development and selection of the dominant follicle.
Reproduction. 61:71–90. 2003.PubMed/NCBI
|
7
|
Quirk SM, Cowan RG, Harman RM, Hu CL and
Porter DA: Ovarian follicular growth and atresia: The relationship
between cell proliferation and survival. J Anim Sci. 82
(E-Suppl):E40–E52. 2004.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhang J, Xu Y, Liu H and Pan Z: MicroRNAs
in ovarian follicular atresia and granulosa cell apoptosis. Reprod
Biol Endocrinol. 17(9)2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Maalouf SW, Liu WS and Pate JL: MicroRNA
in ovarian function. Cell Tissue Res. 363:7–18. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Geisler S and Coller J: RNA in unexpected
places: Long non-coding RNA functions in diverse cellular contexts.
Nat Rev Mol Cell Biol. 14:699–712. 2013.PubMed/NCBI View
Article : Google Scholar
|
11
|
Ponting CP, Oliver PL and Reik W:
Evolution and functions of long noncoding RNAs. Cell. 136:629–641.
2009.PubMed/NCBI View Article : Google Scholar
|
12
|
Jin L, Yang Q, Zhou C, Liu L, Wang H, Hou
M, Wu H, Shi F, Sheng J and Huang H: Profiles for long non-coding
RNAs in ovarian granulosa cells from women with PCOS with or
without hyperandrogenism. Reprod Biomed Online. 37:613–623.
2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Tu J, Chen Y, Li Z, Yang H, Chen H and Yu
Z: Long non-coding RNAs in ovarian granulosa cells. J Ovarian Res.
13(63)2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Yu X, Li Z, Zheng H, Chan MT and Wu WK:
NEAT1: A novel cancer-related long non-coding RNA. Cell Prolif.
50(e12329)2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhou H, Wang Y, Liu Z, Zhang Z, Xiong L
and Wen Y: Recent advances of NEAT1-miRNA interactions in cancer.
Acta Biochim Biophys Sin (Shanghai). 54:153–162. 2022.PubMed/NCBI View Article : Google Scholar
|
16
|
Zhen J, Li J, Li X, Wang X, Xiao Y, Sun Z
and Yu Q: Downregulating lncRNA NEAT1 induces proliferation and
represses apoptosis of ovarian granulosa cells in polycystic ovary
syndrome via microRNA-381/IGF1 axis. J Biomed Sci.
28(53)2021.PubMed/NCBI View Article : Google Scholar
|
17
|
U.S. Office of Science and Technology
Policy. Laboratory animal welfare; U.S. government principles for
the utilization and care of vertebrate animals used in testing,
research and training; notice. Fed Regist. 50:20864–20865.
1985.PubMed/NCBI
|
18
|
Kim EJ, Lee J, Youm HW, Kim SK, Lee JR,
Suh CS and Kim SH: Comparison of follicle isolation methods for
mouse ovarian follicle culture in vitro. Reprod Sci. 25:1270–1278.
2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Miller KP, Gupta RK, Greenfeld CR, Babus
JK and Flaws JA: Methoxychlor directly affects ovarian antral
follicle growth and atresia through Bcl-2- and Bax-mediated
pathways. Toxicol Sci. 88:213–221. 2005.PubMed/NCBI View Article : Google Scholar
|
20
|
Kipp JL, Kilen SM, Woodruff TK and Mayo
KE: Activin regulates estrogen receptor gene expression in the
mouse ovary. J Biol Chem. 282:36755–36765. 2007.PubMed/NCBI View Article : Google Scholar
|
21
|
Xie K, Cai Y, Yang P, Du F and Wu K:
Upregulating microRNA-874-3p inhibits CXCL12 expression to promote
angiogenesis and suppress inflammatory response in ischemic stroke.
Am J Physiol Cell Physiol. 319:C579–C588. 2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Ma J, Zhao N, Du L and Wang Y:
Downregulation of lncRNA NEAT1 inhibits mouse mesangial cell
proliferation, fibrosis, and inflammation but promotes apoptosis in
diabetic nephropathy. Int J Clin Exp Pathol. 12:1174–1183.
2019.PubMed/NCBI
|
23
|
Zhao F, Wang N, Yi Y, Lin P, Tang K, Wang
A and Jin Y: Knockdown of CREB3/Luman by shRNA in mouse granulosa
cells results in decreased estradiol and progesterone synthesis and
promotes cell proliferation. PLoS One. 11(e0168246)2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
25
|
Fang Y and Fullwood MJ: Roles, functions,
and mechanisms of long non-coding RNAs in cancer. Genomics
Proteomics Bioinformatics. 14:42–54. 2016.PubMed/NCBI View Article : Google Scholar
|
26
|
Tay Y, Rinn J and Pandolfi PP: The
multilayered complexity of ceRNA crosstalk and competition. Nature.
505:344–352. 2014.PubMed/NCBI View Article : Google Scholar
|
27
|
Yao W, Pan Z, Du X, Zhang J, Liu H and Li
Q: NORHA, a novel follicular atresia-related lncRNA, promotes
porcine granulosa cell apoptosis via the miR-183-96-182 cluster and
FoxO1 axis. J Anim Sci Biotechnol. 12(103)2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Gao H, Jiang J, Shi Y, Chen J, Zhao L and
Wang C: The LINC00477/miR-128 axis promotes the progression of
polycystic ovary syndrome by regulating ovarian granulosa cell
proliferation and apoptosis. Reprod Biol Endocrinol.
19(29)2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Li Y, Wang H, Zhou D, Shuang T, Zhao H and
Chen B: Up-Regulation of long noncoding RNA SRA promotes cell
growth, inhibits cell apoptosis, and induces secretion of estradiol
and progesterone in ovarian granular cells of mice. Med Sci Monit.
24:2384–2390. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Sun L, Zhang P and Lu W: lncRNA MALAT1
regulates mouse granulosa cell apoptosis and 17beta-estradiol
synthesis via regulating miR-205/CREB1 Axis. Biomed Res Int.
2021(6671814)2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Chan JJ and Tay Y: Noncoding RNA: RNA
regulatory networks in cancer. Int J Mol Sci.
19(1310)2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Xia B, Lin M, Dong W, Chen H, Li B, Zhang
X, Hou Y and Lou G: Upregulation of miR-874-3p and miR-874-5p
inhibits epithelial ovarian cancer malignancy via SIK2. J Biochem
Mol Toxicol. 32(e22168)2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Wei Y, Wang Z, Wei L, Li S, Qiu X and Liu
C: MicroRNA-874-3p promotes testosterone-induced granulosa cell
apoptosis by suppressing HDAC1-mediated p53 deacetylation. Exp Ther
Med. 21(359)2021.PubMed/NCBI View Article : Google Scholar
|