1
|
Westerveld ASR, van Dalen EC, Asogwa OA,
Koopman MMW, Papadakis V, Laureys G, van der Pal HJH, Kremer LCM,
Tytgat GAM and Teepen JC: Neuroblastoma survivors at risk for
developing subsequent neoplasms: A systematic review. Cancer Treat
Rev. 104(102355)2022.PubMed/NCBI View Article : Google Scholar
|
2
|
Mlakar V, Morel E, Mlakar SJ, Ansari M and
Gumy-Pause F: A review of the biological and clinical implications
of RAS-MAPK pathway alterations in neuroblastoma. J Exp Clin Cancer
Res. 40(189)2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Li Y, Lu T, Wang J, Zhuo Z, Miao L, Yang
Z, Zhang J, Cheng J, Zhou H, Li S, et al: YTHDC1 gene polymorphisms
and neuroblastoma susceptibility in Chinese children. Aging (Albany
NY). 13:25426–25439. 2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Bona K, Li Y, Winestone LE, Getz KD, Huang
YS, Fisher BT, Desai AV, Richardson T, Hall M, Naranjo A, et al:
Poverty and targeted immunotherapy: Survival in Children's oncology
group clinical trials for high-risk neuroblastoma. J Natl Cancer
Inst. 113:282–291. 2021.PubMed/NCBI View Article : Google Scholar
|
5
|
Voeller J, Erbe AK, Slowinski J, Rasmussen
K, Carlson PM, Hoefges A, VandenHeuvel S, Stuckwisch A, Wang X,
Gillies SD, et al: Combined innate and adaptive immunotherapy
overcomes resistance of immunologically cold syngeneic murine
neuroblastoma to checkpoint inhibition. J Immunother Cancer.
7(344)2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Ganapathy-Kanniappan S: Molecular
intricacies of aerobic glycolysis in cancer: Current insights into
the classic metabolic phenotype. Crit Rev Biochem Mol Biol.
53:667–682. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Lei S, Yang J, Chen C, Sun J, Yang L, Tang
H, Yang T, Chen A, Zhao H, Li Y and Du X: FLIP(L) is critical for
aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer
Res. 35(79)2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Qu H, Qi D, Wang X, Dong Y, Jin Q, Wei J
and Quan C: CLDN6 Suppresses c-MYC-Mediated aerobic glycolysis to
inhibit proliferation by TAZ in breast cancer. Int J Mol Sci.
23(129)2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Xie Y, Wang M, Xia M, Guo Y, Zu X and
Zhong J: Ubiquitination regulation of aerobic glycolysis in cancer.
Life Sci. 292(120322)2022.PubMed/NCBI View Article : Google Scholar
|
10
|
Ponnusamy L, Natarajan SR and Manoharan R:
MARK2 potentiate aerobic glycolysis-mediated cell growth in breast
cancer through regulating mTOR/HIF-1α and p53 pathways. J Cell
Biochem. 123:759–771. 2022.PubMed/NCBI View Article : Google Scholar
|
11
|
Wu H, Wang X, Wu T and Yang S: miR-489
suppresses multiple myeloma cells growth through inhibition of
LDHA-mediated aerobic glycolysis. Genes Genomics. 42:291–297.
2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Panneerpandian P, Devanandan HJ, Marimuthu
A, Karthikeyan C and Ganesan K: Abacavir induces the
transcriptional activity of YY1 and other oncogenic transcription
factors in gastric cancer cells. Antiviral Res.
174(104695)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Warowicka A, Broniarczyk J, Węglewska M,
Kwaśniewski W and Goździcka-Józefiak A: Dual Role of YY1 in HPV
life cycle and cervical cancer development. Int J Mol Sci.
23(3453)2022.PubMed/NCBI View Article : Google Scholar
|
14
|
Xu C, Tsai YH, Galbo PM, Gong W, Storey
AJ, Xu Y, Byrum SD, Xu L, Whang YE, Parker JS, et al: Cistrome
analysis of YY1 uncovers a regulatory axis of YY1:BRD2/4-PFKP
during tumorigenesis of advanced prostate cancer. Nucleic Acids
Res. 49:4971–4988. 2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Li W, Hu S, Han Z and Jiang X: YY1-Induced
transcriptional activation of FAM111B contributes to the malignancy
of breast cancer. Clin Breast Cancer. 22:e417–e425. 2022.PubMed/NCBI View Article : Google Scholar
|
16
|
Liu SS, Li Y, Zhang H, Zhang D, Zhang XB,
Wang X and Yu Y: The ERα-miR-575-p27 feedback loop regulates
tamoxifen sensitivity in ER-positive breast cancer. Theranostics.
10:10729–10742. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
18
|
Ma X, Li C, Sun L, Huang D, Li T, He X, Wu
G, Yang Z, Zhong X, Song L, et al: Lin28/let-7 axis regulates
aerobic glycolysis and cancer progression via PDK1. Nat Commun.
5(5212)2014.PubMed/NCBI View Article : Google Scholar
|
19
|
Jiménez C, Antonelli R, Nadal-Ribelles M,
Devis-Jauregui L, Latorre P, Solé C, Masanas M, Molero-Valenzuela
A, Soriano A, Sánchez de Toledo J, et al: Structural disruption of
BAF chromatin remodeller impairs neuroblastoma metastasis by
reverting an invasiveness epigenomic program. Mol Cancer.
21(175)2022.PubMed/NCBI View Article : Google Scholar
|
20
|
Xie M, Fu XG and Jiang K: Notch1/TAZ axis
promotes aerobic glycolysis and immune escape in lung cancer. Cell
Death Dis. 12(832)2021.PubMed/NCBI View Article : Google Scholar
|
21
|
Fang E, Wang X, Wang J, Hu A, Song H, Yang
F, Li D, Xiao W, Chen Y, Guo Y, et al: Therapeutic targeting of
YY1/MZF1 axis by MZF1-uPEP inhibits aerobic glycolysis and
neuroblastoma progression. Theranostics. 10:1555–1571.
2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Li B, Wang J, Liao J, Wu M, Yuan X, Fang
H, Shen L and Jiang M: YY1 promotes pancreatic cancer cell
proliferation by enhancing mitochondrial respiration. Cancer Cell
Int. 22(287)2022.PubMed/NCBI View Article : Google Scholar
|
23
|
Gao G, Li X, Zhang J and Yu H: YY1 as a
promoter regulating the circ_0001946/miR-671-5p/EGFR axis to
promote chemotherapy resistance in breast cancer cells. Am J Transl
Res. 14:2550–2566. 2022.PubMed/NCBI
|
24
|
Xu P, Xiao H, Yang Q, Hu R, Jiang L, Bi R,
Jiang X, Wang L, Mei J, Ding F and Huang J: The USP21/YY1/SNHG16
axis contributes to tumor proliferation, migration, and invasion of
non-small-cell lung cancer. Exp Mol Med. 52:41–55. 2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Wang Y, Wu S, Huang C, Li Y, Zhao H and
Kasim V: Yin Yang 1 promotes the Warburg effect and tumorigenesis
via glucose transporter GLUT3. Cancer Sci. 109:2423–2434.
2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhou S, Li P, Qin L, Huang S and Dang N:
Transcription factor YY1 contributes to human melanoma cell growth
through modulating the p53 signalling pathway. Exp Dermatol.
31:1563–1578. 2022.PubMed/NCBI View Article : Google Scholar
|
27
|
Koukourakis MI, Giatromanolaki A,
Bougioukas G and Sivridis E: Lung cancer: A comparative study of
metabolism related protein expression in cancer cells and tumor
associated stroma. Cancer Biol Ther. 6:1476–1479. 2007.PubMed/NCBI View Article : Google Scholar
|
28
|
Zhou Y, Guo Y and Tam KY: Targeting
glucose metabolism to develop anticancer treatments and therapeutic
patents. Expert Opin Ther Pat. 32:441–453. 2022.PubMed/NCBI View Article : Google Scholar
|
29
|
Roy S, Leidal AM, Ye J, Ronen SM and
Debnath J: Autophagy-Dependent Shuttling of TBC1D5 controls plasma
membrane translocation of GLUT1 and glucose uptake. Mol Cell.
67:84–95.e5. 2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Li Y, He L, Wang Y, Tan Y and Zhang F:
N6-methyladenosine methyltransferase KIAA1429 elevates
colorectal cancer aerobic glycolysis via HK2-dependent manner.
Bioengineered. 13:11923–11932. 2022.PubMed/NCBI View Article : Google Scholar
|
31
|
Chatterjee N, Pazarentzos E, Mayekar MK,
Gui P, Allegakoen DV, Hrustanovic G, Olivas V, Lin L, Verschueren
E, Johnson JR, et al: Synthetic essentiality of metabolic regulator
PDHK1 in PTEN-Deficient cells and cancers. Cell Rep.
28:2317–2330.e8. 2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Sheppard S, Santosa EK, Lau CM, Violante
S, Giovanelli P, Kim H, Cross JR, Li MO and Sun JC: Lactate
dehydrogenase A-dependent aerobic glycolysis promotes natural
killer cell anti-viral and anti-tumor function. Cell Rep.
35(109210)2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Hua S, Liu C, Liu L and Wu D: miR-142-3p
inhibits aerobic glycolysis and cell proliferation in
hepatocellular carcinoma via targeting LDHA. Biochem Biophys Res
Commun. 496:947–954. 2018.PubMed/NCBI View Article : Google Scholar
|
34
|
Han RL, Wang FP, Zhang PA, Zhou XY and Li
Y: miR-383 inhibits ovarian cancer cell proliferation, invasion and
aerobic glycolysis by targeting LDHA. Neoplasma. 64:244–252.
2017.PubMed/NCBI View Article : Google Scholar
|