Role of microRNAs regulating trophoblast cell function in the pathogenesis of pre‑eclampsia (Review)
- Authors:
- Wenwen Ning
- Bin Wu
- Yijie Chen
- Jiejing Lian
- Yiming Chen
-
Affiliations: Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, P.R. China - Published online on: December 6, 2022 https://doi.org/10.3892/etm.2022.11749
- Article Number: 50
-
Copyright: © Ning et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lowe SA, Bowyer L, Lust K, McMahon LP, Morton M, North RA, Paech M and Said JM: SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust N Z J Obstet Gynaecol. 55:e1–e29. 2015.PubMed/NCBI View Article : Google Scholar | |
Pankiewicz K, Fijałkowska A, Issat T and Maciejewski TM: Insight into the key points of preeclampsia pathophysiology: Uterine artery remodeling and the role of MicroRNAs. Int J Mol Sci. 22(3132)2021.PubMed/NCBI View Article : Google Scholar | |
Redman CW and Sargent IL: Latest advances in understanding preeclampsia. Science. 308:1592–1594. 2005.PubMed/NCBI View Article : Google Scholar | |
Wojczakowski W, Kimber-Trojnar Ż, Dziwisz F, Słodzińska M, Słodziński H and Leszczyńska-Gorzelak B: Preeclampsia and cardiovascular risk for offspring. J Clin Med. 10(3154)2021.PubMed/NCBI View Article : Google Scholar | |
Parada-Niño L, Castillo-León LF and Morel A: Preeclampsia, natural history, genes and miRs associated with the syndrome. J Pregnancy. 2022(3851225)2022.PubMed/NCBI View Article : Google Scholar | |
Huppertz B: Placental origins of preeclampsia: Challenging the current hypothesis. Hypertension. 51:970–975. 2008.PubMed/NCBI View Article : Google Scholar | |
Ives CW, Sinkey R, Rajapreyar I, Tita ATN and Oparil S: Preeclampsia-Pathophysiology and clinical presentations: JACC State-of-the-Art Review. J Am Coll Cardiol. 76:1690–1702. 2020.PubMed/NCBI View Article : Google Scholar | |
Henderson JT, O'Connor E and Whitlock EP: Low-dose aspirin for prevention of morbidity and mortality from preeclampsia. Ann Intern Med. 161:613–614. 2014.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Le Ray I, Zhu J, Zhang J, Hua J and Reilly M: Preeclampsia prevalence, risk factors and pregnancy outcomes in Sweden and China. JAMA Netw Open. 4(e218401)2021.PubMed/NCBI View Article : Google Scholar | |
Beermann J, Piccoli MT, Viereck J and Thum T: Non-coding RNAs in development and disease: Background, mechanisms and therapeutic approaches. Physiol Rev. 96:1297–1325. 2016.PubMed/NCBI View Article : Google Scholar | |
Sun N, Qin S, Zhang L and Liu S: Roles of noncoding RNAs in preeclampsia. Reprod Biol Endocrinol. 19(100)2021.PubMed/NCBI View Article : Google Scholar | |
Ashraf UM, Hall DL, Rawls AZ and Alexander BT: Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin Sci (Lond). 135:2307–2327. 2021.PubMed/NCBI View Article : Google Scholar | |
Kulcheski FR, Christoff AP and Margis R: Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol. 238:42–51. 2016.PubMed/NCBI View Article : Google Scholar | |
Munjas J, Sopić M, Stefanović A, Košir R, Ninić A, Joksić I, Antonić T, Spasojević-Kalimanovska V and Prosenc Zmrzljak U: Non-Coding RNAs in preeclampsia-molecular mechanisms and diagnostic potential. Int J Mol Sci. 22(10652)2021.PubMed/NCBI View Article : Google Scholar | |
Brodowski L, Schröder-Heurich B, von Hardenberg S, Richter K, von Kaisenberg CS, Dittrich-Breiholz O, Meyer N, Dörk T and von Versen-Höynck F: MicroRNA Profiles of Maternal and Neonatal Endothelial Progenitor Cells in Preeclampsia. Int J Mol Sci. 22(5320)2021.PubMed/NCBI View Article : Google Scholar | |
Bao S, Zhou T, Yan C, Bao J, Yang F, Chao S, Zhou M and Xu Z: A blood-based miRNA signature for early non-invasive diagnosis of preeclampsia. BMC Med. 20(303)2022.PubMed/NCBI View Article : Google Scholar | |
Laganà AS and Naem A: The Pathogenesis of Endometriosis: Are Endometrial Stem/Progenitor Cells Involved? Stem Cells in Reproductive Tissues and Organs. Virant-Klun I (ed). Stem Cell Biology and Regenerative Medicine, Humana. 70:193–216. 2022. | |
Lv Y, Lu C, Ji X, Miao Z, Long W, Ding H and Lv M: Roles of microRNAs in preeclampsia. J Cell Physiol. 234:1052–1061. 2019.PubMed/NCBI View Article : Google Scholar | |
Baek D, Villén J, Shin C, Camargo FD, Gygi SP and Bartel DP: The impact of microRNAs on protein output. Nature. 455:64–71. 2008.PubMed/NCBI View Article : Google Scholar | |
Gantier MP, McCoy CE, Rusinova I, Saulep D, Wang D, Xu D, Irving AT, Behlke MA, Hertzog PJ, Mackay F and Williams BR: Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res. 39:5692–5703. 2011.PubMed/NCBI View Article : Google Scholar | |
Borchert GM, Lanier W and Davidson BL: RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 13:1097–1101. 2006.PubMed/NCBI View Article : Google Scholar | |
Bohnsack MT, Czaplinski K and Gorlich D: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRs. RNA. 10:185–191. 2004.PubMed/NCBI View Article : Google Scholar | |
Bernstein E, Caudy AA, Hannon GJ and Hammond SM: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409:363–366. 2001.PubMed/NCBI View Article : Google Scholar | |
Golden RJ, Chen B, Li T, Braun J, Manjunath H, Chen X, Wu J, Schmid V, Chang TC, Kopp F, et al: An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature. 542:197–202. 2017.PubMed/NCBI View Article : Google Scholar | |
Robertson SA, Zhang B, Chan H, Sharkey DJ, Barry SC, Fullston T and Schjenken JE: MicroRNA regulation of immune events at conception. Mol Reprod Dev. 84:914–925. 2017.PubMed/NCBI View Article : Google Scholar | |
Lykke-Andersen K, Gilchrist MJ, Grabarek JB, Das P, Miska E and Zernicka-Goetz M: Maternal Argonaute 2 is essential for early mouse development at the maternal-zygotic transition. Mol Biol Cell. 19:4383–4392. 2008.PubMed/NCBI View Article : Google Scholar | |
Morales-Prieto DM, Chaiwangyen W, Ospina-Prieto S, Schneider U, Herrmann J, Gruhn B and Markert UR: MicroRNA expression profiles of trophoblastic cells. Placenta. 33:725–734. 2012.PubMed/NCBI View Article : Google Scholar | |
Hromadnikova I, Kotlabova K, Ondrackova M, Pirkova P, Kestlerova A, Novotna V, Hympanova L and Krofta L: Expression profile of C19MC microRNAs in placental tissue in pregnancy-related complications. DNA Cell Biol. 34:437–457. 2015.PubMed/NCBI View Article : Google Scholar | |
Hromadnikova I, Kotlabova K, Ivankova K and Krofta L: First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS One. 12(e0171756)2017.PubMed/NCBI View Article : Google Scholar | |
Luo L, Ye G, Nadeem L, Fu G, Yang BB, Honarparvar E, Dunk C, Lye S and Peng C: MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J Cell Sci. 125(Pt 13):3124–3132. 2012.PubMed/NCBI View Article : Google Scholar | |
Hassan SS, Romero R, Pineles B, Tarca AL, Montenegro D, Erez O, Mittal P, Kusanovic JP, Mazaki-Tovi S, Espinoza J, et al: MicroRNA expression profiling of the human uterine cervix after term labor and delivery. Am J Obstet Gynecol. 202:80.e1–e8. 2010.PubMed/NCBI View Article : Google Scholar | |
Gu Y, Sun J, Groome LJ and Wang Y: Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab. 304:E836–E843. 2013.PubMed/NCBI View Article : Google Scholar | |
Skalis G, Katsi V, Miliou A, Georgiopoulos G, Papazachou O, Vamvakou G, Nihoyannopoulos P, Tousoulis D and Makris T: MicroRNAs in Preeclampsia. Microrna. 8:28–35. 2019.PubMed/NCBI View Article : Google Scholar | |
Qiu C, Chen G and Cui Q: Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases. Sci Rep. 2(318)2012.PubMed/NCBI View Article : Google Scholar | |
Hromadnikova I, Kotlabova K, Doucha J, Dlouha K and Krofta L: Absolute and relative quantification of placenta-specific micrornas in maternal circulation with placental insufficiency-related complications. J Mol Diagn. 14:160–167. 2012.PubMed/NCBI View Article : Google Scholar | |
Ali A, Hadlich F, Abbas MW, Iqbal MA, Tesfaye D, Bouma GJ, Winger QA and Ponsuksili S: MicroRNA-mRNA networks in pregnancy complications: A comprehensive downstream analysis of potential biomarkers. Int J Mol Sci. 22(2313)2021.PubMed/NCBI View Article : Google Scholar | |
Wang W, Feng L, Zhang H, Hachy S, Satohisa S, Laurent LC, Parast M, Zheng J and Chen DB: Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab. 97:E1051–E1059. 2012.PubMed/NCBI View Article : Google Scholar | |
Li Q, Long A, Jiang L, Cai L, Xie LI, Gu J, Chen X and Tan L: Quantification of preeclampsia-related microRNAs in maternal serum. Biomed Rep. 3:792–796. 2015.PubMed/NCBI View Article : Google Scholar | |
Jing J, Wang Y, Quan Y, Wang Z, Liu Y and Ding Z: Maternal obesity alters C19MC microRNAs expression profile in fetal umbilical cord blood. Nutr Metab (Lond). 17(52)2020.PubMed/NCBI View Article : Google Scholar | |
Ali A, Bouma GJ, Anthony RV and Winger QA: The Role of LIN28-let-7-ARID3B pathway in placental development. Int J Mol Sci. 21(3637)2020.PubMed/NCBI View Article : Google Scholar | |
Lu J, Sun Y, Cao Y and Zhang Y: Small RNA sequencing reveals placenta-derived exosomal microRNAs associated with preeclampsia. J Hypertens. 40:1030–1041. 2022.PubMed/NCBI View Article : Google Scholar | |
Zang J, Yan M, Zhang Y, Peng W, Zuo J, Zhou H, Gao G, Li M, Chu Y and Ye Y: MiR-326 inhibits trophoblast growth, migration and invasion by targeting PAX8 via Hippo pathway. Reprod Biol Endocrinol. 20(38)2022.PubMed/NCBI View Article : Google Scholar | |
Gao Y, Zhang X and Meng T: Overexpression of let-7b exerts beneficial effects on the functions of human placental trophoblasts by activating the ERK1/2 signaling pathway. Mol Reprod Dev. 89:39–53. 2022.PubMed/NCBI View Article : Google Scholar | |
Zou AX, Chen B, Li QX and Liang YC: MiR-134 inhibits infiltration of trophoblast cells in placenta of patients with preeclampsia by decreasing ITGB1 expression. Eur Rev Med Pharmacol Sci. 22:2199–2206. 2018.PubMed/NCBI View Article : Google Scholar | |
Ojeda-Casares H and Paradisi I: The regulatory network played by miRANs during normal pregnancy and preeclampsia: A comparative study. Microrna. 10:263–275. 2021.PubMed/NCBI View Article : Google Scholar | |
Yang L, Liu C, Zhang C, Shang R, Zhang Y, Wu S and Long Y: LncRNA small nucleolar RNA host gene 5 inhibits trophoblast autophagy in preeclampsia by targeting microRNA-31-5p and promoting the transcription of secreted protein acidic and rich in cysteine. Bioengineered. 13:7221–7237. 2022.PubMed/NCBI View Article : Google Scholar | |
Yuan Y, Wang X, Sun Q, Dai X and Cai Y: MicroRNA-16 is involved in the pathogenesis of pre-eclampsia via regulation of Notch2. J Cell Physiol. 235:4530–4544. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang R, Liu W, Liu X, Liu X, Tao H, Wu D, Zhao Y and Zou L: MicroRNA-210 regulates human trophoblast cell line HTR-8/SVneo function by attenuating Notch1 expression: Implications for the role of microRNA-210 in pre-eclampsia. Mol Reprod Dev. 86:896–907. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Fei M, Xue G, Zhou Q, Jia Y, Li L, Xin H and Sun S: Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: New insights into molecular mechanisms for the disease. J Cell Mol Med. 16:249–259. 2012.PubMed/NCBI View Article : Google Scholar | |
Xiaobo Z, Qizhi H, Zhiping W and Tao D: Down-regulated miR-149-5p contributes to preeclampsia via modulating endoglin expression. Pregnancy Hypertens. 15:201–208. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu B, Liu L, Cui S, Qi Y and Wang T: Expression and significance of microRNA-126 and VCAM-1 in placental tissues of women with early-onset preeclampsia. J Obstet Gynaecol Res. 47:2042–2050. 2021.PubMed/NCBI View Article : Google Scholar | |
Ali Z, Zafar U, Zaki S, Ahmad S, Khaliq S and Lone KP: Expression levels of MiRNA-16, SURVIVIN and TP53 in Preeclamptic and Normotensive women. J Pak Med Assoc. 71:2208–2213. 2021.PubMed/NCBI View Article : Google Scholar | |
Shi Z, She K, Li H, Yuan X, Han X and Wang Y: MicroRNA-454 contributes to sustaining the proliferation and invasion of trophoblast cells through inhibiting Nodal/ALK7 signaling in pre-eclampsia. Chem Biol Interact. 298:8–14. 2019.PubMed/NCBI View Article : Google Scholar | |
Lai W and Yu L: Elevated MicroRNA 183 impairs trophoblast migration and invasiveness by downregulating FOXP1 expression and elevating GNG7 Expression during Preeclampsia. Mol Cell Biol. 41(e00236)2020.PubMed/NCBI View Article : Google Scholar | |
Wang YP, Zhao P, Liu JY, Liu SM and Wang YX: MicroRNA-132 stimulates the growth and invasiveness of trophoblasts by targeting DAPK-1. Eur Rev Med Pharmacol Sci. 24:9837–9843. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang CY, Tsai PY, Chen TY, Tsai HL, Kuo PL and Su MT: Elevated miR-200a and miR-141 inhibit endocrine gland-derived vascular endothelial growth factor expression and ciliogenesis in preeclampsia. J Physiol. 597:3069–3083. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang X and Meng T: miR-215-5p decreases migration and invasion of trophoblast cells through regulating CDC6 in preeclampsia. Cell Biochem Funct. 38:472–479. 2020.PubMed/NCBI View Article : Google Scholar | |
Ni H, Wang X, Qu H, Gao X and Yu X: MiR-95-5p involves in the migration and invasion of trophoblast cells by targeting low density lipoprotein receptor-related protein 6. J Obstet Gynaecol Res. 47:184–197. 2021.PubMed/NCBI View Article : Google Scholar | |
Umapathy A, Chamley LW and James JL: Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies. Angiogenesis. 23:105–117. 2020.PubMed/NCBI View Article : Google Scholar | |
Cornelius DC: Preeclampsia: From inflammation to immunoregulation. Clin Med Insights Blood Disord. 11(1179545X17752325)2018.PubMed/NCBI View Article : Google Scholar | |
Schoots MH, Gordijn SJ, Scherjon SA, van Goor H and Hillebrands JL: Oxidative stress in placental pathology. Placenta. 69:153–161. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang H, Zhang L, Guo X, Bai Y, Li YX, Sha J, Peng C, Wang YL and Liu M: MiR-195 modulates oxidative stress-induced apoptosis and mitochondrial energy production in human trophoblasts via flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 and pyruvate dehydrogenase phosphatase regulatory subunit. J Hypertens. 36:306–318. 2018.PubMed/NCBI View Article : Google Scholar | |
Wu P, van Den Berg C, Alfirevic Z, O'Brien S, Röthlisberger M, Baker PN, Kenny LC, Kublickiene K and Duvekot JJ: Early pregnancy biomarkers in pre-eclampsia: A systematic review and meta-analysis. Int J Mol Sci. 16:23035–23056. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhao G, Miao H, Li X, Chen S, Hu Y, Wang Z and Hou Y: TGF-β3-induced miR-494 inhibits macrophage polarization via suppressing PGE2 secretion in mesenchymal stem cells. FEBS Lett. 590:1602–1613. 2016.PubMed/NCBI View Article : Google Scholar | |
Muralimanoharan S, Maloyan A, Mele J, Guo C, Myatt LG and Myatt L: MIR-210 modulates mitochondrial respiration in placenta with preeclampsia. Placenta. 33:816–823. 2012.PubMed/NCBI View Article : Google Scholar | |
Abdelazim SA, Shaker OG, Aly YAH and Senousy MA: Uncovering serum placental-related non-coding RNAs as possible biomarkers of preeclampsia risk, onset and severity revealed MALAT-1, miR-363 and miR-17. Sci Rep. 12(1249)2022.PubMed/NCBI View Article : Google Scholar | |
Gan L, Liu Z, Wei M, Chen Y, Yang X, Chen L and Xiao X: MiR-210 and miR-155 as potential diagnostic markers for pre-eclampsia pregnancies. Medicine (Baltimore). 96(e7515)2017.PubMed/NCBI View Article : Google Scholar | |
Luque A, Farwati A, Crovetto F, Crispi F, Figueras F, Gratacos E and Aran JM: Usefulness of circulating microRNAs for the prediction of early preeclampsia at first-trimester of pregnancy. Sci Rep. 4(4882)2014.PubMed/NCBI View Article : Google Scholar | |
Winger EE, Reed JL and Ji X: First trimester PBMC microRNA predicts adverse pregnancy outcome. Am J Reprod Immunol. 72:515–526. 2014.PubMed/NCBI View Article : Google Scholar | |
Yu P, Fan S, Huang L, Yang L and Du Y: MIR210 as a potential molecular target to block invasion and metastasis of gastric cancer. Med Hypotheses. 84:209–212. 2015.PubMed/NCBI View Article : Google Scholar | |
Jaszczuk I, Koczkodaj D, Kondracka A, Kwaśniewska A, Winkler I and Filip A: The role of miRNA-210 in pre-eclampsia development. Ann Med. 54:1350–1356. 2022.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Zhao G, Zeng M, Feng W and Liu J: Overview of extracellular vesicles in the pathogenesis of preeclampsia†. Biol Reprod. 105:32–39. 2021.PubMed/NCBI View Article : Google Scholar | |
Cui J, Chen X, Lin S, Li L, Fan J, Hou H and Li P: MiR-101-containing extracellular vesicles bind to BRD4 and enhance proliferation and migration of trophoblasts in preeclampsia. Stem Cell Res Ther. 11(231)2020.PubMed/NCBI View Article : Google Scholar | |
Bendifallah S, Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A and Daraï E: MicroRNome analysis generates a blood-based signature for endometriosis. Sci Rep. 12(4051)2022.PubMed/NCBI View Article : Google Scholar | |
Hemmatzadeh M, Shomali N, Yousefzadeh Y, Mohammadi H, Ghasemzadeh A and Yousefi M: MicroRNAs: Small molecules with a large impact on pre-eclampsia. J Cell Physiol. 235:3235–3248. 2020.PubMed/NCBI View Article : Google Scholar | |
Chaemsaithong P, Sahota DS and Poon LC: First trimester preeclampsia screening and prediction. Am J Obstet Gynecol. 226 (2S):S1071–S1097.e2. 2022.PubMed/NCBI View Article : Google Scholar |