Open Access

3D multimodal image fusion based on MRI in the preoperative evaluation of microvascular decompression: A meta‑analysis

  • Authors:
    • Chen Liang
    • Ling Yang
    • Binbin Zhang
    • Ruichun Li
    • Shiwen Guo
  • View Affiliations

  • Published online on: March 6, 2023     https://doi.org/10.3892/etm.2023.11870
  • Article Number: 171
  • Copyright: © Liang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Neurovascular compression (NVC) is the main cause of hemifacial spasm (HFS) or trigeminal neuralgia (TN), and frequently occurs at the root entry zone of cranial nerves. Microvascular decompression (MVD) is an effective surgical treatment for TN and HFS caused by NVC. The accurate preoperative diagnosis of NVC is crucial to the evaluation of MVD as an appropriate treatment for TN and HFS. Three‑dimensional (3D) time‑of‑flight magnetic resonance angiography (3D TOF MRA) and high resolution T2‑weighted imaging (HR T2WI) are used to detect NVC prior to MVD; however, this combination alone has certain disadvantages. Multimodal image fusion (MIF) may combine two or more images from the same or different modalities, allowing neurosurgeons to use the reconstructed 3D model to observe anatomical details more clearly from different perspectives. The aim of the present meta‑analysis was to evaluate the effect of 3D MIF based on 3D TOF MRA combined with HR T2WI in the preoperative diagnosis of NVC, and thus to evaluate its clinical application value in the preoperative evaluation of MVD. Relevant studies available on PubMed, Embase, Web of Science, Scopus, China National Knowledge Infrastructure and the Cochrane Library, and published from the inception of each database to September 2022, were retrieved. Studies using 3D MIF based on 3D TOF MRA combined with HR T2WI to diagnose NVC in patients with TN or HFS were included. The Quality Assessment of Diagnostic Accuracy Studies checklist was used to evaluate the quality of the included studies. The statistical software Stata 16.0 was used to perform the meta‑analysis. Data extraction was performed by two independent investigators and discrepancies were resolved by discussion. Pooled sensitivities, specificities, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and the area under the receiver operating characteristic curve (AUROC) were calculated as the main summary effect size. The I² and Q‑test were used to assess heterogeneity. The present search identified 702 articles, of which 7 (comprising 390 patients) fulfilled the inclusion criteria. Bivariate analysis indicated that the pooled sensitivity and specificity of 3D MIF based on 3D TOF MRA combined with HR T2WI for detecting NVC were 0.97 (95% CI, 0.95‑0.99) and 0.89 (95% CI, 0.77‑0.95), respectively. The pooled PLR was 8.8 (95% CI, 4.1‑18.6), the pooled NLR was 0.03 (95% CI, 0.02‑0.06) and the pooled DOR was 291 (95% CI, 99‑853). The AUROC was 0.98 (95% CI, 0.97‑0.99). The studies had no substantial heterogeneity (I2=0; Q=0.000; P=0.50). The present results suggested that 3D MIF based on 3D TOF MRA combined with HR T2WI had excellent sensitivity and specificity for diagnosing NVC in patients with TN or HFS. Therefore, this method should serve a key role in MVD preoperative evaluation.
View Figures
View References

Related Articles

Journal Cover

April-2023
Volume 25 Issue 4

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Liang C, Yang L, Zhang B, Li R and Guo S: 3D multimodal image fusion based on MRI in the preoperative evaluation of microvascular decompression: A meta‑analysis. Exp Ther Med 25: 171, 2023.
APA
Liang, C., Yang, L., Zhang, B., Li, R., & Guo, S. (2023). 3D multimodal image fusion based on MRI in the preoperative evaluation of microvascular decompression: A meta‑analysis. Experimental and Therapeutic Medicine, 25, 171. https://doi.org/10.3892/etm.2023.11870
MLA
Liang, C., Yang, L., Zhang, B., Li, R., Guo, S."3D multimodal image fusion based on MRI in the preoperative evaluation of microvascular decompression: A meta‑analysis". Experimental and Therapeutic Medicine 25.4 (2023): 171.
Chicago
Liang, C., Yang, L., Zhang, B., Li, R., Guo, S."3D multimodal image fusion based on MRI in the preoperative evaluation of microvascular decompression: A meta‑analysis". Experimental and Therapeutic Medicine 25, no. 4 (2023): 171. https://doi.org/10.3892/etm.2023.11870