1
|
Hausenloy DJ and Yellon DM: Ischaemic
conditioning and reperfusion injury. Nat Rev Cardiol. 13:193–209.
2016.PubMed/NCBI View Article : Google Scholar
|
2
|
Ibanez B, Heusch G, Ovize M and Van de
Werf F: Evolving therapies for myocardial ischemia/reperfusion
injury. J Am Coll Cardiol. 65:1454–1471. 2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Eltzschig HK and Eckle T: Ischemia and
reperfusion-from mechanism to translation. Nat Med. 17:1391–1401.
2011.PubMed/NCBI View
Article : Google Scholar
|
4
|
Han J, Wang D, Ye L, Li P, Hao W, Chen X,
Ma J, Wang B, Shang J, Li D and Zheng Q: Rosmarinic acid protects
against inflammation and cardiomyocyte apoptosis during myocardial
ischemia/reperfusion injury by activating peroxisome
proliferator-activated receptor gamma. Front Pharmacol.
8(456)2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Makkos A, Ágg B, Petrovich B, Varga ZV,
Görbe A and Ferdinandy P: Systematic review and network analysis of
microRNAs involved in cardioprotection against myocardial
ischemia/reperfusion injury and infarction: Involvement of redox
signalling. Free Radic Biol Med. 172:237–251. 2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Jayawardena E, Medzikovic L, Ruffenach G
and Eghbali M: Role of miRNA-1 and miRNA-21 in acute myocardial
ischemia-reperfusion injury and their potential as therapeutic
strategy. Int J Mol Sci. 23(1512)2022.PubMed/NCBI View Article : Google Scholar
|
7
|
Marinescu MC, Lazar AL, Marta MM, Cozma A
and Catana CS: Non-coding RNAs: Prevention, diagnosis, and
treatment in myocardial ischemia-reperfusion injury. Int J Mol Sci.
23(2728)2022.PubMed/NCBI View Article : Google Scholar
|
8
|
Lorenzen JM, Batkai S and Thum T:
Regulation of cardiac and renal ischemia-reperfusion injury by
microRNAs. Free Radic Biol Med. 64:78–84. 2013.PubMed/NCBI View Article : Google Scholar
|
9
|
Hinkel R, Penzkofer D, Zuhlke S, Fischer
A, Husada W, Xu QF, Baloch E, van Rooij E, Zeiher AM, Kupatt C and
Dimmeler S: Inhibition of microRNA-92a protects against
ischemia/reperfusion injury in a large-animal model. Circulation.
128:1066–1075. 2013.PubMed/NCBI View Article : Google Scholar
|
10
|
Hullinger TG, Montgomery RL, Seto AG,
Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C,
Latimer PA, et al: Inhibition of miR-15 protects against cardiac
ischemic injury. Circ Res. 110:71–81. 2012.PubMed/NCBI View Article : Google Scholar
|
11
|
Wang JX, Zhang XJ, Li Q, Wang K, Wang Y,
Jiao JQ, Feng C, Teng S, Zhou LY, Gong Y, et al: MicroRNA-103/107
regulate programmed necrosis and myocardial ischemia/reperfusion
injury through targeting FADD. Circ Res. 117:352–363.
2015.PubMed/NCBI View Article : Google Scholar
|
12
|
Wang X, Zhang X, Ren XP, Chen J, Liu H,
Yang J, Medvedovic M, Hu Z and Fan GC: MicroRNA-494 targeting both
proapoptotic and antiapoptotic proteins protects against
ischemia/reperfusion-induced cardiac injury. Circulation.
122:1308–1318. 2010.PubMed/NCBI View Article : Google Scholar
|
13
|
He Y, Cai Y, Sun T, Zhang L, Irwin MG, Xu
A and Xia Z: MicroRNA-503 exacerbates myocardial
ischemia/reperfusion injury via inhibiting PI3K/Akt- and
STAT3-Dependent prosurvival signaling pathways. Oxid Med Cell
Longev. 2022(3449739)2022.PubMed/NCBI View Article : Google Scholar
|
14
|
Lee TL, Lai TC, Lin SR, Lin SW, Chen YC,
Pu CM, Lee IT, Tsai JS, Lee CW and Chen YL: Conditioned medium from
adipose-derived stem cells attenuates ischemia/reperfusion-induced
cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway.
Theranostics. 11:3131–3149. 2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Song R, Dasgupta C, Mulder C and Zhang L:
MicroRNA-210 controls mitochondrial metabolism and protects heart
function in myocardial infarction. Circulation. 145:1140–1153.
2022.PubMed/NCBI View Article : Google Scholar
|
16
|
Shah S, Esdaille CJ, Bhattacharjee M, Kan
HM and Laurencin CT: The synthetic artificial stem cell (SASC):
Shifting the paradigm of cell therapy in regenerative engineering.
Proc Natl Acad Sci USA. 119:2022.PubMed/NCBI View Article : Google Scholar
|
17
|
Kubo Y, Beckmann R, Fragoulis A, Conrads
C, Pavanram P, Nebelung S, Wolf M, Wruck CJ, Jahr H and Pufe T:
Nrf2/ARE signaling directly regulates SOX9 to potentially alter
age-dependent cartilage degeneration. Antioxidants (Basel).
11(263)2022.PubMed/NCBI View Article : Google Scholar
|
18
|
Gong X, Li Y, He Y and Zhou F:
USP7-SOX9-miR-96-5p-NLRP3 network regulates myocardial injury and
cardiomyocyte pyroptosis in sepsis. Hum Gene Ther. 33:1073–1090.
2022.PubMed/NCBI View Article : Google Scholar
|
19
|
Rui L, Liu R, Jiang H and Liu K: Sox9
Promotes cardiomyocyte apoptosis after acute myocardial infarction
by promoting miR-223-3p and inhibiting MEF2C. Mol Biotechnol.
64:902–913. 2022.PubMed/NCBI View Article : Google Scholar
|
20
|
Fan XD, Zheng HB, Fan XS and Lu S:
Increase of SOX9 promotes hepatic ischemia/reperfusion (IR) injury
by activating TGF-β1. Biochem Biophys Res Commun. 503:215–221.
2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Yang B, Nie Y, Wang L and Xiong W:
Flurbiprofen axetil protects against cerebral ischemia/reperfusion
injury via regulating miR-30c-5p and SOX9. Chem Biol Drug Des.
99:197–205. 2022.PubMed/NCBI View Article : Google Scholar
|
22
|
Scharf GM, Kilian K, Cordero J, Wang Y,
Grund A, Hofmann M, Froese N, Wang X, Kispert A, Kist R, et al:
Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and
inflammation. JCI Insight. 5(e126721)2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Schauer A, Adams V, Poitz DM, Barthel P,
Joachim D, Friedrich J, Linke A and Augstein A: Loss of Sox9 in
cardiomyocytes delays the onset of cardiac hypertrophy and
fibrosis. Int J Cardiol. 282:68–75. 2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Lacraz GPA, Junker JP, Gladka MM, Molenaar
B, Scholman KT, Vigil-Garcia M, Versteeg D, de Ruiter H, Vermunt
MW, Creyghton MP, et al: Tomo-Seq Identifies SOX9 as a key
regulator of cardiac fibrosis during ischemic injury. Circulation.
136:1396–1409. 2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Cheng N, Li L, Wu Y, Wang M, Yang M, Wei S
and Wang R: microRNA-30e up-regulation alleviates myocardial
ischemia-reperfusion injury and promotes ventricular remodeling via
SOX9 repression. Mol Immunol. 130:96–103. 2021.PubMed/NCBI View Article : Google Scholar
|
26
|
Li J, Wei Y, Zhou J, Zou H, Ma L, Liu C,
Xiao Z, Liu X, Tan X, Yu T and Cao S: Activation of locus
coeruleus-spinal cord noradrenergic neurons alleviates neuropathic
pain in mice via reducing neuroinflammation from astrocytes and
microglia in spinal dorsal horn. J Neuroinflammation.
19(123)2022.PubMed/NCBI View Article : Google Scholar
|
27
|
Health NIo: Guide for the care and use of
laboratory animals. National Academies, 1985.
|
28
|
Douglas KL, Piccirillo CA and Tabrizian M:
Cell line-dependent internalization pathways and intracellular
trafficking determine transfection efficiency of nanoparticle
vectors. Eur J Pharm Biopharm. 68:676–687. 2008.PubMed/NCBI View Article : Google Scholar
|
29
|
Wang K, Liu CY, Zhou LY, Wang JX, Wang M,
Zhao B, Zhao WK, Xu SJ, Fan LH, Zhang XJ, et al: APF lncRNA
regulates autophagy and myocardial infarction by targeting
miR-188-3p. Nat Commun. 6(6779)2015.PubMed/NCBI View Article : Google Scholar
|
30
|
Cao S, Liu Y, Sun W, Zhao L, Zhang L, Liu
X and Yu T: Genome-Wide expression profiling of
anoxia/reoxygenation in rat cardiomyocytes uncovers the role of
MitoKATP in energy homeostasis. Oxid Med Cell Longev.
2015(756576)2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Liu W, Huang L, Liu X, Zhu L, Gu Y, Tian
W, Zhang L, Deng S and Yu T: Urocortin I protects against
myocardial ischemia/reperfusion injury by sustaining respiratory
function and cardiolipin content via mitochondrial ATP-Sensitive
potassium channel opening. Oxid Med Cell Longev.
2022(7929784)2022.PubMed/NCBI View Article : Google Scholar
|
32
|
Wang QL, Li TT, Fang CL and Zhang BL:
Bioinformatics analysis of the wheel treadmill test on motor
function recovery after spinal cord injury. Ibrain. 7:265–277.
2021.
|
33
|
Cao S, Zhang D, Yuan J, Liu C, Zhou W,
Zhang L, Yu S, Qin B, Li Y and Deng W: MicroRNA And circular RNA
expression in affected skin of patients with postherpetic
neuralgia. J Pain Res. 12:2905–2913. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Deng W, Wang Y, Long X, Zhao R, Wang Z,
Liu Z, Cao S and Shi B: miR-21 Reduces Hydrogen Peroxide-Induced
Apoptosis in c-kit+ Cardiac stem cells in vitro through
PTEN/PI3K/Akt signaling. Oxid Med Cell Longev.
2016(5389181)2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Cui L, Yu M and Cui X: MiR-30c-5p/ROCK2
axis regulates cell proliferation, apoptosis and EMT via the
PI3K/AKT signaling pathway in HG-induced HK-2 cells. Open Life Sci.
15:959–970. 2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Chang X, Zhang K, Zhou R, Luo F, Zhu L,
Gao J, He H, Wei T, Yan T and Ma C: Cardioprotective effects of
salidroside on myocardial ischemia-reperfusion injury in coronary
artery occlusion-induced rats and Langendorff-perfused rat hearts.
Int J Cardiol. 215:532–544. 2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Yajima N, Takahashi M, Morimoto H, Shiba
Y, Takahashi Y, Masumoto J, Ise H, Sagara J, Nakayama J, Taniguchi
S and Ikeda U: Critical role of bone marrow apoptosis-associated
speck-like protein, an inflammasome adaptor molecule, in neointimal
formation after vascular injury in mice. Circulation.
117:3079–3087. 2008.PubMed/NCBI View Article : Google Scholar
|
38
|
Xiao L, Magupalli VG and Wu H: Cryo-EM
structures of the active NLRP3 inflammasome disc. Nature.
613:595–600. 2023.PubMed/NCBI View Article : Google Scholar
|
39
|
McKee CM and Coll RC: NLRP3 inflammasome
priming: A riddle wrapped in a mystery inside an enigma. J Leukoc
Biol. 108:937–952. 2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Jorgensen I, Rayamajhi M and Miao EA:
Programmed cell death as a defence against infection. Nat Rev
Immunol. 17:151–164. 2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Yu Y, Shi H, Yu Y, Liu M, Li M, Liu X,
Wang Y and Chen R: Inhibition of calpain alleviates coxsackievirus
B3-induced myocarditis through suppressing the canonical NLRP3
inflammasome/caspase-1-mediated and noncanonical
caspase-11-mediated pyroptosis pathways. Am J Transl Res.
12:1954–1964. 2020.PubMed/NCBI
|
42
|
Kawaguchi M, Takahashi M, Hata T, Kashima
Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J,
et al: Inflammasome activation of cardiac fibroblasts is essential
for myocardial ischemia/reperfusion injury. Circulation.
123:594–604. 2011.PubMed/NCBI View Article : Google Scholar
|
43
|
Mezzaroma E, Toldo S, Farkas D, Seropian
IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF and
Abbate A: The inflammasome promotes adverse cardiac remodeling
following acute myocardial infarction in the mouse. Proc Natl Acad
Sci USA. 108:19725–19730. 2011.PubMed/NCBI View Article : Google Scholar
|
44
|
Sandanger O, Ranheim T, Vinge LE, Bliksøen
M, Alfsnes K, Finsen AV, Dahl CP, Askevold ET, Florholmen G,
Christensen G, et al: The NLRP3 inflammasome is up-regulated in
cardiac fibroblasts and mediates myocardial ischaemia-reperfusion
injury. Cardiovasc Res. 99:164–174. 2013.PubMed/NCBI View Article : Google Scholar
|
45
|
Dong XJ, Chen JJ, Xue LL and Al-hawwas M:
Treadmill training improves cognitive function by increasing IGF2
targeted downregulation of miRNA-483. Ibrain. 8:264–275. 2022.
|
46
|
Meng S, Hu Y, Zhu J, Feng T and Quan X:
miR-30c-5p acts as a therapeutic target for ameliorating myocardial
ischemia-reperfusion injury. Am J Transl Res. 13:2198–2212.
2021.PubMed/NCBI
|
47
|
Luanpitpong S, Li J, Manke A, Brundage K,
Ellis E, McLaughlin SL, Angsutararux P, Chanthra N, Voronkova M,
Chen YC, et al: SLUG is required for SOX9 stabilization and
functions to promote cancer stem cells and metastasis in human lung
carcinoma. Oncogene. 35:2824–2833. 2016.PubMed/NCBI View Article : Google Scholar
|
48
|
Sun M, Guo M, Ma G, Zhang N, Pan F, Fan X
and Wang R: MicroRNA-30c-5p protects against myocardial
ischemia/reperfusion injury via regulation of Bach1/Nrf2. Toxicol
Appl Pharmacol. 426(115637)2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Chen J, Zhang M, Zhang S, Wu J and Xue S:
Rno-microRNA-30c-5p promotes myocardial ischemia reperfusion injury
in rats through activating NF-κB pathway and targeting SIRT1. BMC
Cardiovasc Disord. 20(240)2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Huntzinger E and Izaurralde E: Gene
silencing by microRNAs: Contributions of translational repression
and mRNA decay. Nat Rev Genet. 12:99–110. 2011.PubMed/NCBI View Article : Google Scholar
|
51
|
Jung YD, Park SK, Kang D, Hwang S, Kang
MH, Hong SW, Moon JH, Shin JS, Jin DH, You D, et al: Epigenetic
regulation of miR-29a/miR-30c/DNMT3A axis controls SOD2 and
mitochondrial oxidative stress in human mesenchymal stem cells.
Redox Biol. 37(101716)2020.PubMed/NCBI View Article : Google Scholar
|
52
|
Wang X, Zhang Y, Han S, Chen H, Chen C, Ji
L and Gao B: Overexpression of miR-30c-5p reduces cellular
cytotoxicity and inhibits the formation of kidney stones through
ATG5. Int J Mol Med. 45:375–384. 2020.PubMed/NCBI View Article : Google Scholar
|
53
|
Zheng D, Liu J, Piao H, Zhu Z, Wei R and
Liu K: ROS-triggered endothelial cell death mechanisms: Focus on
pyroptosis, parthanatos, and ferroptosis. Front Immunol.
13(1039241)2022.PubMed/NCBI View Article : Google Scholar
|
54
|
Abais JM, Xia M, Zhang Y, Boini KM and Li
PL: Redox regulation of NLRP3 inflammasomes: ROS as trigger or
effector? Antioxid Redox Signal. 22:1111–1129. 2015.PubMed/NCBI View Article : Google Scholar
|