1
|
Belver L and Ferrando A: The genetics and
mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer.
16:494–507. 2016.PubMed/NCBI View Article : Google Scholar
|
2
|
Girardi T, Vicente C, Cools J and De
Keersmaecker K: The genetics and molecular biology of T-ALL. Blood.
129:1113–1123. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Hunger SP and Mullighan CG: Acute
lymphoblastic leukemia in children. N Engl J Med. 373:1541–1552.
2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Hunger SP, Lu X, Devidas M, Camitta BM,
Gaynon PS, Winick NJ, Reaman GH and Carroll WL: Improved survival
for children and adolescents with acute lymphoblastic leukemia
between 1990 and 2005: A report from the children's oncology group.
J Clin Oncol. 30:1663–1669. 2012.PubMed/NCBI View Article : Google Scholar
|
5
|
Bhojwani D and Pui CH: Relapsed childhood
acute lymphoblastic leukaemia. Lancet Oncol. 14:e205–e217.
2013.PubMed/NCBI View Article : Google Scholar
|
6
|
Reismüller B, Attarbaschi A, Peters C,
Dworzak MN, Pötschger U, Urban C, Fink FM, Meister B, Schmitt K,
Dieckmann K, et al: Long-term outcome of initially homogenously
treated and relapsed childhood acute lymphoblastic leukaemia in
Austria--a population-based report of the Austrian
Berlin-Frankfurt-Münster (BFM) study group. Br J Haematol.
144:559–570. 2009.PubMed/NCBI View Article : Google Scholar
|
7
|
Pocock R, Farah N, Richardson SE and
Mansour MR: Current and emerging therapeutic approaches for T-cell
acute lymphoblastic leukaemia. Br J Haematol. 194:28–43.
2021.PubMed/NCBI View Article : Google Scholar
|
8
|
Hu X, Li J, Fu M, Zhao X and Wang W: The
JAK/STAT signaling pathway: From bench to clinic. Signal Transduct
Target Ther. 6(402)2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Aittomäki S and Pesu M: Therapeutic
targeting of the Jak/STAT pathway. Basic Clin Pharmacol Toxicol.
114:18–23. 2014.PubMed/NCBI View Article : Google Scholar
|
10
|
O'Shea JJ, Schwartz DM, Villarino AV,
Gadina M, McInnes IB and Laurence A: The JAK-STAT pathway: Impact
on human disease and therapeutic intervention. Annu Rev Med.
66:311–328. 2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Ashizawa T, Akiyama Y, Miyata H, Iizuka A,
Komiyama M, Kume A, Omiya M, Sugino T, Asai A, Hayashi N, et al:
Effect of the STAT3 inhibitor STX-0119 on the proliferation of a
temozolomide-resistant glioblastoma cell line. Int J Oncol.
45:411–418. 2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Song H, Wang R, Wang S and Lin J: A
low-molecular-weight compound discovered through virtual database
screening inhibits Stat3 function in breast cancer cells. Proc Natl
Acad Sci USA. 102:4700–4705. 2005.PubMed/NCBI View Article : Google Scholar
|
13
|
Fuh B, Sobo M, Cen L, Josiah D, Hutzen B,
Cisek K, Bhasin D, Regan N, Lin L, Chan C, et al: LLL-3 inhibits
STAT3 activity, suppresses glioblastoma cell growth and prolongs
survival in a mouse glioblastoma model. Br J Cancer. 100:106–112.
2009.PubMed/NCBI View Article : Google Scholar
|
14
|
Nie Y, Li Y and Hu S: A novel small
inhibitor, LLL12, targets STAT3 in non-small cell lung cancer in
vitro and in vivo. Oncol Lett. 16:5349–5354. 2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Liu A, Liu Y, Jin Z, Hu Q, Lin L, Jou D,
Yang J, Xu Z, Wang H, Li C and Lin J: XZH-5 inhibits STAT3
phosphorylation and enhances the cytotoxicity of chemotherapeutic
drugs in human breast and pancreatic cancer cells. PLoS One.
7(e46624)2012.PubMed/NCBI View Article : Google Scholar
|
16
|
Kim MJ, Nam HJ, Kim HP, Han SW, Im SA, Kim
TY, Oh DY and Bang YJ: OPB-31121, a novel small molecular
inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an
antitumor activity in gastric cancer cells. Cancer Lett.
335:145–152. 2013.PubMed/NCBI View Article : Google Scholar
|
17
|
Zhang X, Yue P, Page BD, Li T, Zhao W,
Namanja AT, Paladino D, Zhao J, Chen Y, Gunning PT and Turkson J:
Orally bioavailable small-molecule inhibitor of transcription
factor Stat3 regresses human breast and lung cancer xenografts.
Proc Natl Acad Sci USA. 109:9623–9628. 2012.PubMed/NCBI View Article : Google Scholar
|
18
|
Jiang X, Tang J, Wu M, Chen S, Xu Z, Wang
H, Wang H, Yu X, Li Z and Teng L: BP-1-102 exerts an antitumor
effect on the AGS human gastric cancer cell line through modulating
the STAT3 and MAPK signaling pathways. Mol Med Rep. 19:2698–2706.
2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Belton A, Xian L, Huso T, Koo M, Luo LZ,
Turkson J, Page BD, Gunning PT, Liu G, Huso DL and Resar LM: STAT3
inhibitor has potent antitumor activity in B-lineage acute
lymphoblastic leukemia cells overexpressing the high mobility group
A1 (HMGA1)-STAT3 pathway. Leuk Lymphoma. 57:2681–2684.
2016.PubMed/NCBI View Article : Google Scholar
|
20
|
Cheng Z, Yi Y, Xie S, Yu H, Peng H and
Zhang G: The effect of the JAK2 inhibitor TG101209 against T cell
acute lymphoblastic leukemia (T-ALL) is mediated by inhibition of
JAK-STAT signaling and activation of the crosstalk between
apoptosis and autophagy signaling. Oncotarget. 8:106753–106763.
2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Yu H, Yin Y, Yi Y, Cheng Z, Kuang W, Li R,
Zhong H, Cui Y, Yuan L, Gong F, et al: Targeting lactate
dehydrogenase A (LDHA) exerts antileukemic effects on T-cell acute
lymphoblastic leukemia. Cancer Commun (Lond). 40:501–517.
2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Pencik J, Pham HT, Schmoellerl J, Javaheri
T, Schlederer M, Culig Z, Merkel O, Moriggl R, Grebien F and Kenner
L: JAK-STAT signaling in cancer: From cytokines to non-coding
genome. Cytokine. 87:26–36. 2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Vainchenker W and Constantinescu SN:
JAK/STAT signaling in hematological malignancies. Oncogene.
32:2601–2613. 2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Migone TS, Lin JX, Cereseto A, Mulloy JC,
O'Shea JJ, Franchini G and Leonard WJ: Constitutively activated
Jak-STAT pathway in T cells transformed with HTLV-I. Science.
269:79–81. 1995.PubMed/NCBI View Article : Google Scholar
|
25
|
Weber-Nordt RM, Egen C, Wehinger J, Ludwig
W, Gouilleux-Gruart V, Mertelsmann R and Finke J: Constitutive
activation of STAT proteins in primary lymphoid and myeloid
leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma
cell lines. Blood. 88:809–816. 1996.PubMed/NCBI
|
26
|
Ohgami RS, Ma L, Merker JD, Martinez B,
Zehnder JL and Arber DA: STAT3 mutations are frequent in CD30+
T-cell lymphomas and T-cell large granular lymphocytic leukemia.
Leukemia. 27:2244–2247. 2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Koskela HL, Eldfors S, Ellonen P, van
Adrichem AJ, Kuusanmäki H, Andersson EI, Lagström S, Clemente MJ,
Olson T, Jalkanen SE, et al: Somatic STAT3 mutations in large
granular lymphocytic leukemia. N Engl J Med. 366:1905–1913.
2012.PubMed/NCBI View Article : Google Scholar
|
28
|
Couronné L, Scourzic L, Pilati C, Della
Valle V, Duffourd Y, Solary E, Vainchenker W, Merlio JP,
Beylot-Barry M, Damm F, et al: STAT3 mutations identified in human
hematologic neoplasms induce myeloid malignancies in a mouse bone
marrow transplantation model. Haematologica. 98:1748–1752.
2013.PubMed/NCBI View Article : Google Scholar
|
29
|
Zhang X, Yue P, Fletcher S, Zhao W,
Gunning PT and Turkson J: A novel small-molecule disrupts Stat3 SH2
domain-phosphotyrosine interactions and Stat3-dependent tumor
processes. Biochem Pharmacol. 79:1398–1409. 2010.PubMed/NCBI View Article : Google Scholar
|
30
|
Pistritto G, Trisciuoglio D, Ceci C,
Garufi A and D'Orazi G: Apoptosis as anticancer mechanism: Function
and dysfunction of its modulators and targeted therapeutic
strategies. Aging. 8:603–619. 2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Montalto FI and De Amicis F: Cyclin D1 in
cancer: A molecular connection for cell cycle control, adhesion and
invasion in tumor and stroma. Cells. 9(2648)2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Madden SK, de Araujo AD, Gerhardt M,
Fairlie DP and Mason JM: Taking the Myc out of cancer: Toward
therapeutic strategies to directly inhibit c-Myc. Mol Cancer.
20(3)2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Ala M: Target c-Myc to treat pancreatic
cancer. Cancer Biol Ther. 23:34–50. 2022.PubMed/NCBI View Article : Google Scholar
|
34
|
Mo M, Tong S, Yin H, Jin Z, Zu X and Hu X:
SHCBP1 regulates STAT3/c-Myc signaling activation to promote tumor
progression in penile cancer. Am J Cancer Res. 10:3138–3156.
2020.PubMed/NCBI
|
35
|
Gao S, Chen M, Wei W, Zhang X, Zhang M,
Yao Y, Lv Y, Ling T, Wang L and Zou X: Crosstalk of mTOR/PKM2 and
STAT3/c-Myc signaling pathways regulate the energy metabolism and
acidic microenvironment of gastric cancer. J Cell Biochem.
120:1193–1202. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Ning R, Chen G, Fang R, Zhang Y, Zhao W
and Qian F: Diosmetin inhibits cell proliferation and promotes
apoptosis through STAT3/c-Myc signaling pathway in human
osteosarcoma cells. Biol Res. 54(40)2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Zhu Y and Feng Y: GRAIL inhibits the
growth, migration and invasion of lung adenocarcinoma cells by
modulating STAT3/C-MYC signaling pathways. J BUON. 26:353–358.
2021.PubMed/NCBI
|
38
|
Wu QY, Cheng Z, Zhou YZ, Zhao Y, Li JM,
Zhou XM, Peng HL, Zhang GS, Liao XB and Fu XM: A novel STAT3
inhibitor attenuates angiotensin II-induced abdominal aortic
aneurysm progression in mice through modulating vascular
inflammation and autophagy. Cell Death Dis. 11(131)2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Jiang Z, Huang J, You L, Zhang J and Li B:
Pharmacological inhibition of STAT3 by BP-1-102 inhibits
intracranial aneurysm formation and rupture in mice through
modulating inflammatory response. Pharmacol Res Perspect.
9(e00704)2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Jiang Z, Huang J, You L and Zhang J:
Protective effects of BP-1-102 against intracranial
aneurysms-induced impairments in mice. J Drug Target. 29:974–982.
2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Berasain C, Castillo J, Perugorria MJ,
Latasa MU, Prieto J and Avila MA: Inflammation and liver cancer:
new molecular links. Ann N Y Acad Sci. 1155:206–221.
2009.PubMed/NCBI View Article : Google Scholar
|
42
|
He G and Karin M: NF-κB and STAT3-key
players in liver inflammation and cancer. Cell Res. 21:159–168.
2011.PubMed/NCBI View Article : Google Scholar
|
43
|
Negroni A, Colantoni E, Cucchiara S and
Stronati L: Necroptosis in intestinal inflammation and cancer: New
concepts and therapeutic perspectives. Biomolecules.
10(1431)2020.PubMed/NCBI View Article : Google Scholar
|
44
|
Huang X, Xiao F, Li Y, Qian W, Ding W and
Ye X: Bypassing drug resistance by triggering necroptosis: Recent
advances in mechanisms and its therapeutic exploitation in
leukemia. J Exp Clin Cancer Res. 37(310)2018.PubMed/NCBI View Article : Google Scholar
|