New insights on IL‑36 in intestinal inflammation and colorectal cancer (Review)
- Authors:
- Minghui Li
- Wei Jiang
- Zehui Wang
- Yihan Lu
- Jun Zhang
-
Affiliations: Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China - Published online on: April 21, 2023 https://doi.org/10.3892/etm.2023.11974
- Article Number: 275
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Taylor SL, Renshaw BR, Garka KE, Smith DE and Sims JE: Genomic organization of the interleukin-1 locus. Genomics. 79:726–733. 2002.PubMed/NCBI View Article : Google Scholar | |
Smith DE, Renshaw BR, Ketchem RR, Kubin M, Garka KE and Sims JE: Four new members expand the interleukin-1 superfamily. J Biol Chem. 275:1169–1175. 2000.PubMed/NCBI View Article : Google Scholar | |
Dunn E, Sims JE, Nicklin MJ and O'Neill LA: Annotating genes with potential roles in the immune system: Six new members of the IL-1 family. Trends Immunol. 22:533–536. 2001.PubMed/NCBI View Article : Google Scholar | |
Dinarello C, Arend W, Sims J, Smith D, Blumberg H, O'Neill L, Goldbach-Mansky R, Pizarro T, Hoffman H, Bufler P, et al: IL-1 family nomenclature. Nat Immunol. 11(973)2010.PubMed/NCBI View Article : Google Scholar | |
Sims JE, Nicklin MJ, Bazan JF, Barton JL, Busfield SJ, Ford JE, Kastelein RA, Kumar S, Lin H, Mulero JJ, et al: A new nomenclature for IL-1-family genes. Trends Immunol. 22:536–537. 2001.PubMed/NCBI View Article : Google Scholar | |
Henry CM, Sullivan GP, Clancy DM, Afonina IS, Kulms D and Martin SJ: Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 14:708–722. 2016.PubMed/NCBI View Article : Google Scholar | |
Macleod T, Doble R, McGonagle D, Wasson CW, Alase A, Stacey M and Wittmann M: Neutrophil elastase-mediated proteolysis activates the anti-inflammatory cytokine IL-36 receptor antagonist. Sci Rep. 6(24880)2016.PubMed/NCBI View Article : Google Scholar | |
Bassoy EY, Towne JE and Gabay C: Regulation and function of interleukin-36 cytokines. Immunol Rev. 281:169–178. 2018.PubMed/NCBI View Article : Google Scholar | |
Gabay C and Towne JE: Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J Leukocyte Biol. 97:645–652. 2015.PubMed/NCBI View Article : Google Scholar | |
Towne JE, Garka KE, Renshaw BR, Virca GD and Sims JE: Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs. J Biol Chem. 279:13677–13688. 2004.PubMed/NCBI View Article : Google Scholar | |
Towne JE, Renshaw BR, Douangpanya J, Lipsky BP, Shen M, Gabel CA and Sims JE: Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36α, IL-36β, and IL-36γ) or antagonist (IL-36Ra) activity. J Biol Chem. 286:42594–42602. 2011.PubMed/NCBI View Article : Google Scholar | |
Mullard A: FDA approves first anti-IL-36 receptor antibody for rare skin disease. Nat Rev Drug Discov. 21(786)2022.PubMed/NCBI View Article : Google Scholar | |
Ding L, Wang X, Hong X, Lu L and Liu D: IL-36 cytokines in autoimmunity and inflammatory disease. Oncotarget. 9:2895–2901. 2017.PubMed/NCBI View Article : Google Scholar | |
Boutet MA, Bart G, Penhoat M, Amiaud J, Brulin B, Charrier C, Morel F, Lecron JC, Rolli-Derkinderen M, Bourreille A, et al: Distinct expression of interleukin (IL)-36α, β and γ, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn's disease. Clin Exp Immunol. 184:159–173. 2016.PubMed/NCBI View Article : Google Scholar | |
Scheibe K, Kersten C, Schmied A, Vieth M, Primbs T, Carlé B, Knieling F, Claussen J, Klimowicz AC, Zheng J, et al: Inhibiting interleukin 36 receptor signaling reduces fibrosis in mice with chronic intestinal inflammation. Gastroenterology. 156:1082–1097.e11. 2019.PubMed/NCBI View Article : Google Scholar | |
Ngo VL, Abo H, Maxim E, Harusato A, Geem D, Medina-Contreras O, Merlin D, Gewirtz AT, Nusrat A and Denning TL: A cytokine network involving IL-36γ, IL-23, and IL-22 promotes antimicrobial defense and recovery from intestinal barrier damage. Proc Natl Acad Sci USA. 115:E5076–E5085. 2018.PubMed/NCBI View Article : Google Scholar | |
Queen D, Ediriweera C and Liu L: Function and regulation of IL-36 signaling in inflammatory diseases and cancer development. Front Cell Dev Biol. 7(317)2019.PubMed/NCBI View Article : Google Scholar | |
Xu P, Guan H, Xiao W and Sun L: The role of IL-36 subfamily in intestinal disease. Biochem Soc Trans. 50:223–230. 2022.PubMed/NCBI View Article : Google Scholar | |
Chen F, Qu M, Zhang F, Tan Z, Xia Q, Hambly BD, Bao S and Tao K: IL-36 s in the colorectal cancer: Is interleukin 36 good or bad for the development of colorectal cancer? Bmc Cancer. 20(92)2020.PubMed/NCBI View Article : Google Scholar | |
Bao S, Hu R and Hambly BD: IL-34, IL-36 and IL-38 in colorectal cancer-key immunoregulators of carcinogenesis. Biophys Rev. 12:925–930. 2020.PubMed/NCBI View Article : Google Scholar | |
Byrne J, Baker K, Houston A and Brint E: IL-36 cytokines in inflammatory and malignant diseases: Not the new kid on the block anymore. Cell Mol Life Sci. 78:6215–6227. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhou L and Todorovic V: Interleukin-36: Structure, signaling and function. Adv Exp Med Biol. 21:191–210. 2021.PubMed/NCBI View Article : Google Scholar | |
Namba T, Ichii O, Nakamura T, Masum MA, Otani Y, Hosotani M, Elewa YHA and Kon Y: Compartmentalization of interleukin 36 subfamily according to inducible and constitutive expression in the kidneys of a murine autoimmune nephritis model. Cell Tissue Res. 386:59–77. 2021.PubMed/NCBI View Article : Google Scholar | |
Buhl AL and Wenzel J: Interleukin-36 in infectious and inflammatory skin diseases. Front Immunol. 10(1162)2019.PubMed/NCBI View Article : Google Scholar | |
Mai SZ, Li CJ, Xie XY, Xiong H, Xu M, Zeng FQ, Guo Q and Han YF: Increased serum IL-36α and IL-36γ levels in patients with systemic lupus erythematosus: Association with disease activity and arthritis. Int Immunopharmacol. 58:103–108. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen WJ, Yu X, Yuan XR, Chen BJ, Cai N, Zeng S, Sun YS and Li HW: The role of IL-36 in the pathophysiological processes of autoimmune diseases. Front Pharmacol. 12(727956)2021.PubMed/NCBI View Article : Google Scholar | |
Dinarello CA: The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 15:612–632. 2019.PubMed/NCBI View Article : Google Scholar | |
Vigne S, Palmer G, Lamacchia C, Martin P, Talabot-Ayer D, Rodriguez E, Ronchi F, Sallusto F, Dinh H, Sims JE and Gabay C: IL-36R ligands are potent regulators of dendritic and T cells. Blood. 118:5813–5823. 2011.PubMed/NCBI View Article : Google Scholar | |
Foster AM, Baliwag J, Chen CS, Guzman AM, Stoll SW, Gudjonsson JE, Ward NL and Johnston A: IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J Immunol. 192:6053–6061. 2014.PubMed/NCBI View Article : Google Scholar | |
Carrier Y, Ma HL, Ramon HE, Napierata L, Small C, O'Toole M, Young DA, Fouser LA, Nickerson-Nutter C, Collins M, et al: Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J Invest Dermatol. 131:2428–2437. 2011.PubMed/NCBI View Article : Google Scholar | |
Catapano M, Vergnano M, Romano M, Mahil SK, Choon SE, Burden AD, Young HS, Carr IM, Lachmann HJ, Lombardi G, et al: IL-36 promotes systemic IFN-I responses in severe forms of psoriasis. J Invest Dermatol. 140:816–826. 2020.PubMed/NCBI View Article : Google Scholar | |
Baker KJ, Brint E and Houston A: Transcriptomic and functional analyses reveal a tumour-promoting role for the IL-36 receptor in colon cancer and crosstalk between IL-36 signalling and the IL-17/ IL-23 axis. Brit J Cancer. 128:735–747. 2023.PubMed/NCBI View Article : Google Scholar | |
Aoyagi T, Newstead MW, Zeng X, Nanjo Y, Peters-Golden M, Kaku M and Standiford TJ: Interleukin-36γ and IL-36 receptor signaling mediate impaired host immunity and lung injury in cytotoxic Pseudomonas aeruginosa pulmonary infection: Role of prostaglandin E2. PLoS Pathog. 13(e1006737)2017.PubMed/NCBI View Article : Google Scholar | |
Gao Y, Wen Q, Hu S, Zhou X, Xiong W, Du X, Zhang L, Fu Y, Yang J, Zhou C, et al: IL-36γ promotes killing of mycobacterium tuberculosis by macrophages via WNT5A-induced noncanonical WNT signaling. J Immunol. 203:922–935. 2019.PubMed/NCBI View Article : Google Scholar | |
Kovach MA, Singer B, Martinez-Colon G, Newstead MW, Zeng X, Mancuso P, Moore TA, Kunkel SL, Peters-Golden M, Moore BB and Standiford TJ: IL-36γ is a crucial proximal component of protective type-1-mediated lung mucosal immunity in Gram-positive and -negative bacterial pneumonia. Mucosal Immunol. 10:1320–1334. 2017.PubMed/NCBI View Article : Google Scholar | |
Yi G, Ybe JA, Saha SS, Caviness G, Raymond E, Ganesan R, Mbow ML and Kao CC: Structural and functional attributes of the interleukin-36 receptor. J Biol Chem. 291:16597–16609. 2016.PubMed/NCBI View Article : Google Scholar | |
Zarezadeh Mehrabadi A, Aghamohamadi N, Khoshmirsafa M, Aghamajidi A, Pilehforoshha M, Massoumi R and Falak R: The roles of interleukin-1 receptor accessory protein in certain inflammatory conditions. Immunology. 166:38–46. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhou L, Todorovic V, Kakavas S, Sielaff B, Medina L, Wang L, Sadhukhan R, Stockmann H, Richardson PL, DiGiammarino E, et al: Quantitative ligand and receptor binding studies reveal the mechanism of interleukin-36 (IL-36) pathway activation. J Biol Chem. 293:403–411. 2018.PubMed/NCBI View Article : Google Scholar | |
Ganesan R, Raymond EL, Mennerich D, Woska JR Jr, Caviness G, Grimaldi C, Ahlberg J, Perez R, Roberts S, Yang D, et al: Generation and functional characterization of anti-human and anti-mouse IL-36R antagonist monoclonal antibodies. MAbs. 9:1143–1154. 2017.PubMed/NCBI View Article : Google Scholar | |
Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH, Pullabhatla V, Knight J, Spain SL, Nestle FO, Burden AD, et al: Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet. 89:432–437. 2011.PubMed/NCBI View Article : Google Scholar | |
van de Veerdonk FL, Stoeckman AK, Wu G, Boeckermann AN, Azam T, Netea MG, Joosten LA, van der Meer JW, Hao R, Kalabokis V and Dinarello CA: IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci USA. 109:3001–3005. 2012.PubMed/NCBI View Article : Google Scholar | |
Li JM, Lu R, Zhang Y, Lin J, Hua X, Pflugfelder SC and Li DQ: IL-36α/IL-36RA/IL-38 signaling mediates inflammation and barrier disruption in human corneal epithelial cells under hyperosmotic stress. Ocul Surf. 22:163–171. 2021.PubMed/NCBI View Article : Google Scholar | |
Ngo VL, Kuczma M, Maxim E and Denning TL: IL-36 cytokines and gut immunity. Immunology. 163:145–154. 2021.PubMed/NCBI View Article : Google Scholar | |
Han Y, Huard A, Mora J, da Silva P, Brüne B and Weigert A: IL-36 family cytokines in protective versus destructive inflammation. Cell Signal. 75(109773)2020.PubMed/NCBI View Article : Google Scholar | |
Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ and Mansell A: MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses. J Biol Chem. 284:24192–24203. 2009.PubMed/NCBI View Article : Google Scholar | |
Swindell WR, Beamer MA, Sarkar MK, Loftus S, Fullmer J, Xing X, Ward NL, Tsoi LC, Kahlenberg MJ, Liang Y and Gudjonsson JE: RNA-Seq analysis of IL-1B and IL-36 responses in epidermal keratinocytes identifies a shared MyD88-dependent gene signature. Front Immunol. 9(80)2018.PubMed/NCBI View Article : Google Scholar | |
Nishida A, Hidaka K, Kanda T, Imaeda H, Shioya M, Inatomi O, Bamba S, Kitoh K, Sugimoto M and Andoh A: Increased expression of interleukin-36, a member of the interleukin-1 cytokine family, in inflammatory bowel disease. Inflamm Bowel Dis. 22:303–314. 2016.PubMed/NCBI View Article : Google Scholar | |
Fonseca-Camarillo G, Furuzawa-Carballeda J, Iturriaga-Goyon E and Yamamoto-Furusho JK: Differential expression of IL-36 family members and IL-38 by immune and nonimmune cells in patients with active inflammatory bowel disease. Biomed Res Int. 2018(5140691)2018.PubMed/NCBI View Article : Google Scholar | |
Scheibe K, Backert I, Wirtz S, Hueber A, Schett G, Vieth M, Probst HC, Bopp T, Neurath MF and Neufert C: IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo. Gut. 66:823–838. 2017.PubMed/NCBI View Article : Google Scholar | |
Russell SE, Horan RM, Stefanska AM, Carey A, Leon G, Aguilera M, Statovci D, Moran T, Fallon PG, Shanahan F, et al: IL-36α expression is elevated in ulcerative colitis and promotes colonic inflammation. Mucosal Immunol. 9:1193–1204. 2016.PubMed/NCBI View Article : Google Scholar | |
Harusato A, Abo H, Ngo VL, Yi SW, Mitsutake K, Osuka S, Kohlmeier JE, Li JD, Gewirtz AT, Nusrat A and Denning TL: IL-36γ signaling controls the induced regulatory T cell-Th9 cell balance via NFκB activation and STAT transcription factors. Mucosal Immunol. 10:1455–1467. 2017.PubMed/NCBI View Article : Google Scholar | |
Kanda T, Nishida A, Takahashi K, Hidaka K, Imaeda H, Inatomi O, Bamba S, Sugimoto M and Andoh A: Interleukin(IL)-36α and IL-36γ induce proinflammatory mediators from human colonic subepithelial myofibroblasts. Front Med (Lausanne). 2(69)2015.PubMed/NCBI View Article : Google Scholar | |
Zhu J, Xu Y, Li Z, Liu S, Fu W and Wei Y: Interleukin-36β exacerbates DSS-induce acute colitis via inhibiting Foxp3+ regulatory T cell response and increasing Th2 cell response. Int Immunopharmacol. 108(108762)2022.PubMed/NCBI View Article : Google Scholar | |
Xie C, Yan W, Quan R, Chen C, Tu L, Hou X and Fu Y: Interleukin-38 is elevated in inflammatory bowel diseases and suppresses intestinal inflammation. Cytokine. 127(154963)2020.PubMed/NCBI View Article : Google Scholar | |
Sonnenberg GF, Fouser LA and Artis D: Border patrol: Regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 12:383–390. 2011.PubMed/NCBI View Article : Google Scholar | |
Longman RS, Diehl GE, Victorio DA, Huh JR, Galan C, Miraldi ER, Swaminath A, Bonneau R, Scherl EJ and Littman DR: CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 211:1571–1583. 2014.PubMed/NCBI View Article : Google Scholar | |
Medina-Contreras O, Harusato A, Nishio H, Flannigan KL, Ngo V, Leoni G, Neumann PA, Geem D, Lili LN, Ramadas RA, et al: Cutting edge: IL-36 receptor promotes resolution of intestinal damage. J Immunol. 196:34–38. 2016.PubMed/NCBI View Article : Google Scholar | |
Parkos CA: Neutrophil-Epithelial Interactions: A Double-Edged Sword. Am J Pathol. 186:1404–1416. 2016.PubMed/NCBI View Article : Google Scholar | |
Luissint AC, Parkos CA and Nusrat A: Inflammation and the intestinal barrier: Leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology. 151:616–632. 2016.PubMed/NCBI View Article : Google Scholar | |
Peterson LW and Artis D: Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat Rev Immunol. 14:141–153. 2014.PubMed/NCBI View Article : Google Scholar | |
Melton E and Qiu H: Interleukin-36 cytokine/receptor signaling: A new target for tissue fibrosis. Int J Mol Sci. 21(6458)2020.PubMed/NCBI View Article : Google Scholar | |
Yun SM, Kim SH and Kim EH: The molecular mechanism of transforming growth factor-β signaling for intestinal fibrosis: A mini-review. Front Pharmacol. 10(162)2019.PubMed/NCBI View Article : Google Scholar | |
D'Alessio S, Ungaro F, Noviello D, Lovisa S, Peyrin-Biroulet L and Danese S: Revisiting fibrosis in inflammatory bowel disease: The gut thickens. Nat Rev Gastroenterol Hepatol. 19:169–184. 2022.PubMed/NCBI View Article : Google Scholar | |
Elias M, Zhao S, Le HT, Wang J, Neurath MF, Neufert C, Fiocchi C and Rieder F: IL-36 in chronic inflammation and fibrosis-bridging the gap? J Clin Invest. 131(e144336)2021.PubMed/NCBI View Article : Google Scholar | |
Chi HH, Hua KF, Lin YC, Chu CL, Hsieh CY, Hsu YJ, Ka SM, Tsai YL, Liu FC and Chen A: IL-36 signaling facilitates activation of the NLRP3 inflammasome and IL-23/IL-17 axis in renal inflammation and fibrosis. J Am Soc Nephrol. 28:2022–2037. 2017.PubMed/NCBI View Article : Google Scholar | |
Sommerfeld SD, Cherry C, Schwab RM, Chung L, Maestas DR Jr, Laffont P, Stein JE, Tam A, Ganguly S, Housseau F, et al: Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis. Sci Immunol. 4(eaax4783)2019.PubMed/NCBI View Article : Google Scholar | |
Nishida A, Inatomi O, Fujimoto T, Imaeda H, Tani M and Andoh A: Interleukin-36α induces inflammatory mediators from human pancreatic myofibroblasts via a MyD88 dependent pathway. Pancreas. 46:539–548. 2017.PubMed/NCBI View Article : Google Scholar | |
Santacroce G, Lenti MV and Di Sabatino A: Therapeutic targeting of intestinal fibrosis in Crohn's disease. Cells. 11(429)2022.PubMed/NCBI View Article : Google Scholar | |
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C and Rieder F: Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev. 302:211–227. 2021.PubMed/NCBI View Article : Google Scholar | |
Takahashi K, Nishida A, Shioya M, Imaeda H, Bamba S, Inatomi O, Shimizu T, Kitoh K and Andoh A: Interleukin (IL)-1β is a strong inducer of IL-36γ expression in human colonic myofibroblasts. PLoS One. 10(e138423)2015.PubMed/NCBI View Article : Google Scholar | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI View Article : Google Scholar | |
Shah SC and Itzkowitz SH: Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology. 162:715–730.e3. 2022.PubMed/NCBI View Article : Google Scholar | |
Hirano T, Hirayama D, Wagatsuma K, Yamakawa T, Yokoyama Y and Nakase H: Immunological mechanisms in inflammation-associated colon carcinogenesis. Int J Mol Sci. 21(3062)2020.PubMed/NCBI View Article : Google Scholar | |
Wang ZS, Cong ZJ, Luo Y, Mu YF, Qin SL, Zhong M and Chen JJ: Decreased expression of interleukin-36α predicts poor prognosis in colorectal cancer patients. Int J Clin Exp Patho. 7:8077–8081. 2014.PubMed/NCBI | |
Zhao X, Chen X, Shen X, Tang P, Chen C, Zhu Q, Li M, Xia R, Yang X, Feng C, et al: IL-36β promotes CD8+ T cell activation and antitumor immune responses by activating mTORC1. Front Immunol. 10(1803)2019.PubMed/NCBI View Article : Google Scholar | |
Pan QZ, Pan K, Zhao JJ, Chen JG, Li JJ, Lv L, Wang DD, Zheng HX, Jiang SS, Zhang XF and Xia JC: Decreased expression of interleukin-36α correlates with poor prognosis in hepatocellular carcinoma. Cancer Immunology, Immunotherapy. 62:1675–1685. 2013.PubMed/NCBI View Article : Google Scholar | |
Wei X, Yao Y, Wang X, Sun J, Zhao W, Qiu L, Zhai W, Qi Y, Gao Y and Wu Y: Interleukin-36α inhibits colorectal cancer metastasis by enhancing the infiltration and activity of CD8+ T lymphocytes. Int Immunopharmacol. 100(108152)2021.PubMed/NCBI View Article : Google Scholar | |
Wang X, Zhao X, Feng C, Weinstein A, Xia R, Wen W, Lv Q, Zuo S, Tang P, Yang X, et al: IL-36γ transforms the tumor microenvironment and promotes type 1 lymphocyte-mediated antitumor immune responses. Cancer Cell. 28:296–306. 2015.PubMed/NCBI View Article : Google Scholar | |
Stolk D, van der Vliet HJ, de Gruijl TD, van Kooyk Y and Exley MA: Positive & negative roles of innate effector cells in controlling cancer progression. Front Immunol. 9(1990)2018.PubMed/NCBI View Article : Google Scholar | |
Uzhachenko RV and Shanker A: CD8+ T lymphocyte and NK cell network: Circuitry in the cytotoxic domain of immunity. Front Immunol. 10(1906)2019.PubMed/NCBI View Article : Google Scholar | |
Weinstein AM, Chen L, Brzana EA, Patil PR, Taylor JL, Fabian KL, Wallace CT, Jones SD, Watkins SC, Lu B, et al: Tbet and IL-36γ cooperate in therapeutic DC-mediated promotion of ectopic lymphoid organogenesis in the tumor microenvironment. Oncoimmunology. 6(e1322238)2017.PubMed/NCBI View Article : Google Scholar | |
Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, Li J, Li F and Tan HB: Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 470:126–133. 2020.PubMed/NCBI View Article : Google Scholar | |
Schumacher TN and Thommen DS: Tertiary lymphoid structures in cancer. Science. 375(eabf9419)2022.PubMed/NCBI View Article : Google Scholar | |
Weinstein AM, Giraldo NA, Petitprez F, Julie C, Lacroix L, Peschaud F, Emile JF, Marisa L, Fridman WH, Storkus WJ and Sautès-Fridman C: Association of IL-36γ with tertiary lymphoid structures and inflammatory immune infiltrates in human colorectal cancer. Cancer Immunol Immunother. 68:109–120. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang M, Giehl E, Feng C, Feist M, Chen H, Dai E, Liu Z, Ma C, Ravindranathan R, Bartlett DL, et al: IL-36γ-armed oncolytic virus exerts superior efficacy through induction of potent adaptive antitumor immunity. Cancer Immunol Immunother. 70:2467–2481. 2021.PubMed/NCBI View Article : Google Scholar | |
Weinstein AM and Storkus WJ: Therapeutic lymphoid organogenesis in the tumor microenvironment. Adv Cancer Res. 128:197–233. 2015.PubMed/NCBI View Article : Google Scholar | |
Yang W, Dong HP, Wang P, Xu ZG, Xian J, Chen J, Wu H, Lou Y, Lin D and Zhong B: IL-36γ and IL-36Ra reciprocally regulate colon inflammation and tumorigenesis by modulating the cell-matrix adhesion network and Wnt signaling. Adv Sci (Weinh). 9(e2103035)2022.PubMed/NCBI View Article : Google Scholar | |
Baker K, O'Donnell C, Bendix M, Keogh S, Byrne J, O'Riordain M, Neary P, Houston A and Brint E: IL-36 signalling enhances a pro-tumorigenic phenotype in colon cancer cells with cancer cell growth restricted by administration of the IL-36R antagonist. Oncogene. 41:2672–2684. 2022.PubMed/NCBI View Article : Google Scholar | |
Kaushik I, Ramachandran S, Zabel C, Gaikwad S and Srivastava SK: The evolutionary legacy of immune checkpoint inhibitors. Semin Cancer Biol. 86:491–498. 2022.PubMed/NCBI View Article : Google Scholar | |
Wei SC, Duffy CR and Allison JP: Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8:1069–1086. 2018.PubMed/NCBI View Article : Google Scholar | |
Peña-Asensio J, Calvo H, Torralba M, Miquel J, Sanz-de-Villalobos E and Larrubia JR: Anti-PD-1/PD-L1 based combination immunotherapy to boost antigen-specific CD8+ T cell response in hepatocellular carcinoma. Cancers (Basel). 13(1922)2021.PubMed/NCBI View Article : Google Scholar | |
Hewitt SL, Bai A, Bailey D, Ichikawa K, Zielinski J, Karp R, Apte A, Arnold K, Zacharek SJ, Iliou MS, et al: Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci Transl Med. 11(eaat9143)2019.PubMed/NCBI View Article : Google Scholar | |
Bachelez H, Choon SE, Marrakchi S, Burden AD, Tsai TF, Morita A, Navarini AA, Zheng M, Xu J, Turki H, et al: Trial of spesolimab for generalized pustular psoriasis. New Engl J Med. 385:2431–2440. 2021.PubMed/NCBI View Article : Google Scholar | |
Ferrante M, Irving PM, Selinger CP, D'Haens G, Kuehbacher T, Seidler U, Gropper S, Haeufel T, Forgia S, Danese S, et al: Safety and tolerability of spesolimab in patients with ulcerative colitis. Expert Opin Drug Saf. 22:141–152. 2023.PubMed/NCBI View Article : Google Scholar |