1
|
O'Neill TW, McCabe PS and McBeth J: Update
on the epidemiology, risk factors and disease outcomes of
osteoarthritis. Best Pract Res Clin Rheumatol. 32:312–326.
2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Litwic A, Edwards MH, Dennison EM and
Cooper C: Epidemiology and burden of osteoarthritis. Br Med Bull.
105:185–199. 2013.PubMed/NCBI View Article : Google Scholar
|
3
|
Pereira D, Ramos E and Branco J:
Osteoarthritis. Acta Med Port. 28:99–106. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Martel-Pelletier J, Barr AJ, Cicuttini FM,
Conaghan PG, Cooper C, Goldring MB, Goldring SR, Jones G, Teichtahl
AJ and Pelletier JP: Osteoarthritis. Nat Rev Dis Primers.
2(16072)2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Palazzo C, Nguyen C, Lefevre-Colau MM,
Rannou F and Poiraudeau S: Risk factors and burden of
osteoarthritis. Ann Phys Rehabil Med. 59:134–138. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Rahmati M, Nalesso G, Mobasheri A and
Mozafari M: Aging and osteoarthritis: Central role of the
extracellular matrix. Ageing Res Rev. 40:20–30. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Theocharis AD, Skandalis SS, Gialeli C and
Karamanos NK: Extracellular matrix structure. Adv Drug Deliv Rev.
97:4–27. 2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Shen J, Abu-Amer Y, O'Keefe RJ and
McAlinden A: Inflammation and epigenetic regulation in
osteoarthritis. Connect Tissue Res. 58:49–63. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Chow YY and Chin KY: The role of
inflammation in the pathogenesis of osteoarthritis. Mediators
Inflamm. 2020(8293921)2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Hwang HS and Kim HA: Chondrocyte apoptosis
in the pathogenesis of osteoarthritis. Int J Mol Sci.
16:26035–26054. 2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Xia B, Di C, Zhang J, Hu S, Jin H and Tong
P: Osteoarthritis pathogenesis: A review of molecular mechanisms.
Calcif Tissue Int. 95:495–505. 2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Geyer M and Schönfeld C: Novel insights
into the pathogenesis of osteoarthritis. Current Rheumatol Rev.
14:98–107. 2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Liu DD, Song XY, Yang PF, Ai QD, Wang YY,
Feng XY, He X and Chen NH: Progress in pharmacological research of
chemokine like factor 1 (CKLF1). Cytokine. 102:41–50.
2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Han W, Lou Y, Tang J, Zhang Y, Chen Y, Li
Y, Gu W, Huang J, Gui L, Tang Y, et al: Molecular cloning and
characterization of chemokine-like factor 1 (CKLF1), a novel human
cytokine with unique structure and potential chemotactic activity.
Biochem J. 357:127–135. 2001.PubMed/NCBI View Article : Google Scholar
|
15
|
Cai X, Deng J, Ming Q, Cai H and Chen Z:
Chemokine-like factor 1: A promising therapeutic target in human
diseases. Exp Biol Med (Maywood). 245:1518–1528. 2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Li Y, Yu H and Feng J: Role of
chemokine-like factor 1 as an inflammatory marker in diseases.
Front Immunol. 14(1085154)2023.PubMed/NCBI View Article : Google Scholar
|
17
|
Liu Y, Liu L, Zhou Y, Zhou P, Yan Q, Chen
X, Ding S and Zhu F: CKLF1 enhances inflammation-mediated
carcinogenesis and prevents doxorubicin-induced apoptosis via
IL6/STAT3 signaling in HCC. Clin Cancer Res. 25:4141–4154.
2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Liu X, Qu C, Zhang Y, Fang J, Teng L,
Zhang R, Zhang X and Shen C: Chemokine-like factor 1 (CKLF1)
aggravates neointimal hyperplasia through activating the
NF-κB/VCAM-1 pathway. FEBS Open Bio. 10:1880–1890. 2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Pan Z, Yin H, Wang S, Xiong G and Yin Z:
Bcl-xL expression following articular cartilage injury and its
effects on the biological function of chondrocytes. Eng Life Sci.
20:571–579. 2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Chen C, Chu SF, Ai QD, Zhang Z and Chen
NH: CKLF1/CCR5 axis is involved in neutrophils migration of rats
with transient cerebral ischemia. Int Immunopharmacol.
85(106577)2020.PubMed/NCBI View Article : Google Scholar
|
21
|
González-Martin A, Mira E and Mañes S:
CCR5 as a potential target in cancer therapy: Inhibition or
stimulation? Anticancer Agents Med Chem. 12:1045–1057.
2012.PubMed/NCBI View Article : Google Scholar
|
22
|
Velasco-Velázquez M, Xolalpa W and Pestell
RG: The potential to target CCL5/CCR5 in breast cancer. Expert Opin
Ther Targets. 18:1265–1275. 2014.PubMed/NCBI View Article : Google Scholar
|
23
|
Aldinucci D and Casagrande N: Inhibition
of the CCL5/CCR5 axis against the progression of gastric cancer.
Int J Mol Sci. 19(1477)2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Pervaiz A, Zepp M, Georges R, Bergmann F,
Mahmood S, Faiza S, Berger MR and Adwan H: Antineoplastic effects
of targeting CCR5 and its therapeutic potential for colorectal
cancer liver metastasis. J Cancer Res Clin Oncol. 147:73–91.
2021.PubMed/NCBI View Article : Google Scholar
|
25
|
Singh SK, Mishra MK, Eltoum IA, Bae S,
Lillard JW Jr and Singh R: CCR5/CCL5 axis interaction promotes
migratory and invasiveness of pancreatic cancer cells. Sci Rep.
8(1323)2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Xie P, Dan F, Yu G, Ruan W and Yu H:
Laquinimod mitigated IL-1β-induced impairment of the cartilage
extracellular matrix in human ATDC5 chondrocytes. Chem Res Toxicol.
33:933–939. 2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Ladner YD, Alini M and Armiento AR: The
dimethylmethylene blue assay (DMMB) for the quantification of
sulfated glycosaminoglycans. Methods Mol Biol. 2598:115–121.
2023.PubMed/NCBI View Article : Google Scholar
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
29
|
Landskron G, De la Fuente M, Thuwajit P,
Thuwajit C and Hermoso MA: Chronic inflammation and cytokines in
the tumor microenvironment. J Immunol Res.
2014(149185)2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Luo Y, Sinkeviciute D, He Y, Karsdal M,
Henrotin Y, Mobasheri A, Önnerfjord P and Bay-Jensen A: The minor
collagens in articular cartilage. Protein Cell. 8:560–572.
2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Malemud CJ: Inhibition of MMPs and
ADAM/ADAMTS. Biochem Pharmacol. 165:33–40. 2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Mathiessen A and Conaghan PG: Synovitis in
osteoarthritis: Current understanding with therapeutic
implications. Arthritis Res Ther. 19(18)2017.PubMed/NCBI View Article : Google Scholar
|
33
|
Vilá S: Inflammation in osteoarthritis. P
R Health Sci J. 36:123–129. 2017.PubMed/NCBI
|
34
|
Jenei-Lanzl Z, Meurer A and Zaucke F:
Interleukin-1β signaling in osteoarthritis-chondrocytes in focus.
Cell Signal. 53:212–223. 2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Blasioli DJ and Kaplan DL: The roles of
catabolic factors in the development of osteoarthritis. Tissue Eng
Part B Rev. 20:355–363. 2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Tao K, Tang X, Wang B, Li RJ, Zhang BQ,
Lin JH, Zhang BQ, Lin JH and Li H: Distinct expression of
chemokine-like factor 1 in synovium of osteoarthritis, rheumatoid
arthritis and ankylosing spondylitis. J Huazhong Univ Sci Technolog
Med Sci. 36:70–76. 2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Ai Q, Chen C, Chu S, Luo Y, Zhang Z, Zhang
S, Yang P, Gao Y, Zhang X and Chen N: IMM-H004 protects against
cerebral ischemia injury and cardiopulmonary complications via
CKLF1 mediated inflammation pathway in adult and aged rats. Int J
Mol Sci. 20(1661)2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Zheng Y, Wang Y, Zhang X, Tan Y, Peng S,
Chen L and He Y: C19, a C-terminal peptide of CKLF1, decreases
inflammation and proliferation of dermal capillaries in psoriasis.
Sci Rep. 7(13890)2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Chen C, Ai Q and Wei Y: Hydroxytyrosol
protects against cisplatin-induced nephrotoxicity via attenuating
CKLF1 mediated inflammation, and inhibiting oxidative stress and
apoptosis. Int Immunopharmacol. 96(107805)2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Li J, Bao X, Li Y, Wang Y, Zhao Z and Jin
X: Study of the functional mechanisms of osteopontin and
chemokine-like factor 1 in the development and progression of
abdominal aortic aneurysms in rats. Exp Ther Med. 12:4007–4011.
2016.PubMed/NCBI View Article : Google Scholar
|
41
|
Risbud MV and Shapiro IM: Role of
cytokines in intervertebral disc degeneration: Pain and disc
content. Nat Rev Rheumatol. 10:44–56. 2014.PubMed/NCBI View Article : Google Scholar
|
42
|
Cui N, Hu M and Khalil RA: Biochemical and
biological attributes of matrix metalloproteinases. Prog Mol Biol
Transl Sci. 147:1–73. 2017.PubMed/NCBI View Article : Google Scholar
|
43
|
Mead TJ and Apte SS: ADAMTS proteins in
human disorders. Matrix Biol. 71-72:225–239. 2018.PubMed/NCBI View Article : Google Scholar
|
44
|
Santamaria S and Yamamoto K: Analysis of
aggrecanase activity using neoepitope antibodies. Methods Mol Biol.
2043:125–136. 2020.PubMed/NCBI View Article : Google Scholar
|
45
|
Wang T and He C: Pro-inflammatory
cytokines: The link between obesity and osteoarthritis. Cytokine
Growth Factor Rev. 44:38–50. 2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Hintze V, Samsonov SA, Anselmi M, Moeller
S, Becher J, Schnabelrauch M, Scharnweber D and Pisabarro MT:
Sulfated glycosaminoglycans exploit the conformational plasticity
of bone morphogenetic protein-2 (BMP-2) and alter the interaction
profile with its receptor. Biomacromolecules. 15:3083–3092.
2014.PubMed/NCBI View Article : Google Scholar
|
47
|
Maeda K, Das D, Nakata H and Mitsuya H:
CCR5 inhibitors: Emergence, success, and challenges. Exp Opin Emerg
Drugs. 17:135–145. 2012.PubMed/NCBI View Article : Google Scholar
|
48
|
Hsu YH, Hsieh MS, Liang YC, Li CY, Sheu
MT, Chou DT, Chen TF and Chen CH: Production of the chemokine
eotaxin-1 in osteoarthritis and its role in cartilage degradation.
J Cell Biochem. 93:929–939. 2004.PubMed/NCBI View Article : Google Scholar
|
49
|
Yuan GH, Masuko-Hongo K, Sakata M, Tsuruha
J, Onuma H, Nakamura H, Aoki H, Kato T and Nishioka K: The role of
C-C chemokines and their receptors in osteoarthritis. Arthritis
Rheum. 44:1056–1070. 2001.PubMed/NCBI View Article : Google Scholar
|
50
|
Alblowi J, Tian C, Siqueira MF, Kayal RA,
McKenzie E, Behl Y, Gerstenfeld L, Einhorn TA and Graves DT:
Chemokine expression is upregulated in chondrocytes in diabetic
fracture healing. Bone. 53:294–300. 2013.PubMed/NCBI View Article : Google Scholar
|