Exploring novel biomarkers in dilated cardiomyopathy‑induced heart failure by integrated analysis and in vitro experiments
- Authors:
- Lei Zhou
- Fei Peng
- Juexing Li
- Hui Gong
-
Affiliations: Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China - Published online on: May 16, 2023 https://doi.org/10.3892/etm.2023.12024
- Article Number: 325
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Savarese G and Lund LH: Global public health burden of heart failure. Card Fail Rev. 3:7–11. 2017.PubMed/NCBI View Article : Google Scholar | |
Lumbers RT, Shah S, Lin H, Czuba T, Henry A, Swerdlow DI, Mälarstig A, Andersson C, Verweij N, Holmes MV, et al: The genomics of heart failure: Design and rationale of the HERMES consortium. ESC Heart Fail. 8:5531–5541. 2021.PubMed/NCBI View Article : Google Scholar | |
Ziaeian B and Fonarow GC: Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 13:368–378. 2016.PubMed/NCBI View Article : Google Scholar | |
Smith JG: Molecular epidemiology of heart failure: Translational challenges and opportunities. JACC Basic Transl Sci. 2:757–769. 2017.PubMed/NCBI View Article : Google Scholar | |
Huang J, Yin H, Zhang M, Ni Q and Xuan J: Understanding the economic burden of heart failure in China: Impact on disease management and resource utilization. J Med Econ. 20:549–553. 2017.PubMed/NCBI View Article : Google Scholar | |
Klein S, Jiang S, Morey JR, Pai A, Mancini DM, Lala A and Ferket BS: Estimated health care utilization and expenditures in individuals with heart failure from the medical expenditure panel survey. Circ Heart Fail. 14(e007763)2021.PubMed/NCBI View Article : Google Scholar | |
Yingchoncharoen T, Wu TC, Choi DJ, Ong TK, Liew HB and Cho MC: Economic burden of heart failure in asian countries with different healthcare systems. Korean Circ J. 51:681–693. 2021.PubMed/NCBI View Article : Google Scholar | |
Gomes CPC, Schroen B, Kuster GM, Robinson EL, Ford K, Squire IB, Heymans S, Martelli F, Emanueli C and Devaux Y: EU-CardioRNA COST Action (CA17129). Regulatory RNAs in Heart Failure. Circulation. 141:313–328. 2020.PubMed/NCBI View Article : Google Scholar | |
Guo Q, Zhang Y, Zhang S, Jin J, Pang S, Wu X, Zhang W, Bi X, Zhang Y, Zhang Q and Jiang F: Genome-wide translational reprogramming of genes important for myocyte functions in overload-induced heart failure. Biochim Biophys Acta Mol Basis Dis. 1866(165649)2020.PubMed/NCBI View Article : Google Scholar | |
Pepin ME, Drakos S, Ha CM, Tristani-Firouzi M, Selzman CH, Fang JC, Wende AR and Wever-Pinzon O: DNA methylation reprograms cardiac metabolic gene expression in end-stage human heart failure. Am J Physiol Heart Circ Physiol. 317:H674–H84. 2019.PubMed/NCBI View Article : Google Scholar | |
van der Pol A, Hoes MF, de Boer RA and van der Meer P: Cardiac foetal reprogramming: A tool to exploit novel treatment targets for the failing heart. J Internal Med. 288:491–506. 2020.PubMed/NCBI View Article : Google Scholar | |
Bondue A, Arbustini E, Bianco A, Ciccarelli M, Dawson D, De Rosa M, Hamdani N, Hilfiker-Kleiner D, Meder B, Leite-Moreira AF, et al: Complex roads from genotype to phenotype in dilated cardiomyopathy: Scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc Res. 114:1287–1303. 2018.PubMed/NCBI View Article : Google Scholar | |
Cannata A, Fabris E, Merlo M, Artico J, Gentile P, Pio Loco C, Ballaben A, Ramani F, Barbati G and Sinagra G: Sex Differences in the Long-term prognosis of dilated cardiomyopathy. Can J Cardiol. 36:37–44. 2020.PubMed/NCBI View Article : Google Scholar | |
Merlo M, Cannata A, Gobbo M, Stolfo D, Elliott PM and Sinagra G: Evolving concepts in dilated cardiomyopathy. Eur J Heart Fail. 20:228–239. 2018.PubMed/NCBI View Article : Google Scholar | |
Jefferies JL and Towbin JA: Dilated cardiomyopathy. Lancet. 375:752–762. 2010.PubMed/NCBI View Article : Google Scholar | |
Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, Parish S, Barlera S, Franzosi MG, Rust S, et al: Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 361:2518–2528. 2009.PubMed/NCBI View Article : Google Scholar | |
Kuehl U, Lassner D, Gast M, Stroux A, Rohde M, Siegismund C, Wang X, Escher F, Gross M, Skurk C, et al: Differential Cardiac MicroRNA expression predicts the clinical course in human enterovirus cardiomyopathy. Circ Heart Fail. 8:605–618. 2015.PubMed/NCBI View Article : Google Scholar | |
Roselli C, Chaffin MD, Weng LC, Aeschbacher S, Ahlberg G, Albert CM, Almgren P, Alonso A, Anderson CD, Aragam KG, et al: Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet. 50:1225–1233. 2018.PubMed/NCBI View Article : Google Scholar | |
Tabibiazar R, Wagner RA, Liao A and Quertermous T: Transcriptional profiling of the heart reveals chamber-specific gene expression patterns. Circ Res. 93:1193–1201. 2003.PubMed/NCBI View Article : Google Scholar | |
Langfelder P and Horvath S: WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 9(559)2008.PubMed/NCBI View Article : Google Scholar | |
To KY: Identification of differential gene expression by high throughput analysis. Comb Chem High Throughput Screen. 3:235–241. 2000.PubMed/NCBI View Article : Google Scholar | |
Dang H, Ye Y, Zhao X and Zeng Y: Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database. BMC Cardiovasc Disord. 20(320)2020.PubMed/NCBI View Article : Google Scholar | |
Fan G and Wei J: Identification of potential novel biomarkers and therapeutic targets involved in human atrial fibrillation based on bioinformatics analysis. Kardiologia Polska. 78:694–702. 2020.PubMed/NCBI View Article : Google Scholar | |
Yifan C, Jianfeng S and Jun P: Development and validation of a random forest diagnostic model of acute myocardial infarction based on Ferroptosis-related genes in circulating endothelial cells. Front Cardiovasc Med. 8(663509)2021.PubMed/NCBI View Article : Google Scholar | |
Matkovich SJ, Al Khiami B, Efimov IR, Evans S, Vader J, Jain A, Brownstein BH, Hotchkiss RS and Mann DL: Widespread Down-regulation of cardiac mitochondrial and sarcomeric genes in patients with sepsis. Crit Care Med. 45:407–414. 2017.PubMed/NCBI View Article : Google Scholar | |
Schwientek P, Ellinghaus P, Steppan S, D'Urso D, Seewald M, Kassner A, Cebulla R, Schulte-Eistrup S, Morshuis M, Röfe D, et al: Global gene expression analysis in nonfailing and failing myocardium pre- and postpulsatile and nonpulsatile ventricular assist device support. Physiol Genomics. 42:397–405. 2010.PubMed/NCBI View Article : Google Scholar | |
Sweet ME, Cocciolo A, Slavov D, Jones KL, Sweet JR, Graw SL, Reece TB, Ambardekar AV, Bristow MR, Mestroni L and Taylor MRG: Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genomics. 19(812)2018.PubMed/NCBI View Article : Google Scholar | |
Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012.PubMed/NCBI View Article : Google Scholar | |
Chen B, Khodadoust MS, Liu CL, Newman AM and Alizadeh AA: Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol. 1711:243–259. 2018.PubMed/NCBI View Article : Google Scholar | |
Davidson MM, Nesti C, Palenzuela L, Walker WF, Hernandez E, Protas L, Hirano M and Isaac ND: Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol. 39:133–147. 2005.PubMed/NCBI View Article : Google Scholar | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar | |
Sachinidis A: Cardiotoxicity and heart failure: Lessons from human-induced pluripotent stem cell-derived cardiomyocytes and anticancer drugs. Cells. 9(1001)2020.PubMed/NCBI View Article : Google Scholar | |
Zhong Z, Tian Y, Luo X, Zou J, Wu L and Tian J: Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect against DOX-induced heart failure through the miR-100-5p/NOX4 pathway. Front Bioeng Biotechnol. 9(703241)2021.PubMed/NCBI View Article : Google Scholar | |
Reichart D, Magnussen C, Zeller T and Blankenberg S: Dilated cardiomyopathy: From epidemiologic to genetic phenotypes: A translational review of current literature. J Internal Med. 286:362–372. 2019.PubMed/NCBI View Article : Google Scholar | |
Weintraub RG, Semsarian C and Macdonald P: Dilated cardiomyopathy. Lancet. 390:400–414. 2017.PubMed/NCBI View Article : Google Scholar | |
Diaz-Navarro R, Urrutia G, Cleland JG, Poloni D, Villagran F, Acosta-Dighero R, Bangdiwala SI, Rada G and Madrid E: Stem cell therapy for dilated cardiomyopathy. Cochrane Database Syst Rev. 7(CD013433)2021.PubMed/NCBI View Article : Google Scholar | |
Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, Feng Z, Müller S, Kayvanpour E, Vogel B, et al: Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 36:1123–1135a. 2015.PubMed/NCBI View Article : Google Scholar | |
Kadhi A, Mohammed F and Nemer G: The genetic pathways underlying immunotherapy in dilated cardiomyopathy. Front Cardiovasc Med. 8(613295)2021.PubMed/NCBI View Article : Google Scholar | |
Merlo M, Pivetta A, Pinamonti B, Stolfo D, Zecchin M, Barbati G, Di Lenarda A and Sinagra G: Long-term prognostic impact of therapeutic strategies in patients with idiopathic dilated cardiomyopathy: Changing mortality over the last 30 years. Eur J Heart Fail. 16:317–324. 2014.PubMed/NCBI View Article : Google Scholar | |
Linde C, Grabowski M, Ponikowski P, Rao I, Stagg A and Tschope C: Cardiac contractility modulation therapy improves health status in patients with heart failure with preserved ejection fraction: A pilot study (CCM-HFpEF). Eur J Heart Fail. 24:2275–2284. 2022.PubMed/NCBI View Article : Google Scholar | |
Liang B, Zhou Z, Yang Z, Liu J, Zhang L, He J, Li H, Huang Y, Yang Q, Xian S and Wang L: AGEs-RAGE axis mediates myocardial fibrosis via activation of cardiac fibroblasts induced by autophagy in heart failure. Exp Physiol. 107:879–891. 2022.PubMed/NCBI View Article : Google Scholar | |
Burr SD and Stewart JA Jr: Extracellular matrix components isolated from diabetic mice alter cardiac fibroblast function through the AGE/RAGE signaling cascade. Life Sci. 250(117569)2020.PubMed/NCBI View Article : Google Scholar | |
Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G and Schulz R: The myocardial JAK/STAT pathway: From protection to failure. Pharmacol Ther. 120:172–185. 2008.PubMed/NCBI View Article : Google Scholar | |
Okonko DO, Marley SB, Anker SD, Poole-Wilson PA and Gordon MY: Erythropoietin resistance contributes to anaemia in chronic heart failure and relates to aberrant JAK-STAT signal transduction. Int J Cardiol. 164:359–364. 2013.PubMed/NCBI View Article : Google Scholar | |
Terrell AM, Crisostomo PR, Wairiuko GM, Wang M, Morrell ED and Meldrum DR: Jak/STAT/SOCS signaling circuits and associated cytokine-mediated inflammation and hypertrophy in the heart. Shock. 26:226–234. 2006.PubMed/NCBI View Article : Google Scholar | |
Chen SN, Lombardi R, Karmouch J, Tsai JY, Czernuszewicz G, Taylor MRG, Mestroni L, Coarfa C, Gurha P and Marian AJ: DNA damage Response/TP53 pathway is activated and contributes to the pathogenesis of dilated cardiomyopathy associated with LMNA (Lamin A/C) mutations. Circ Res. 124:856–873. 2019.PubMed/NCBI View Article : Google Scholar | |
Das B, Young D, Vasanji A, Gupta S, Sarkar S and Sen S: Influence of p53 in the transition of myotrophin-induced cardiac hypertrophy to heart failure. Cardiovasc Res. 87:524–534. 2010.PubMed/NCBI View Article : Google Scholar | |
Fujita T and Ishikawa Y: Apoptosis in Heart Failure-The role of the beta-adrenergic receptor-mediated signaling pathway and p53-mediated signaling pathway in the apoptosis of cardiomyocytes. Circ J. 75:1811–1818. 2011.PubMed/NCBI View Article : Google Scholar | |
Irie T, Sips PY, Kai S, Kida K, Ikeda K, Hirai S, Moazzami K, Jiramongkolchai P, Bloch DB, Doulias PT, et al: S-Nitrosylation of Calcium-handling proteins in cardiac adrenergic signaling and hypertrophy. Circ Res. 117:793–803. 2015.PubMed/NCBI View Article : Google Scholar | |
Persoon S, Paulus M, Hirt S, Jungbauer C, Dietl A, Luchner A, Schmid C, Maier LS and Birner C: Cardiac unloading by LVAD support differentially influences components of the cGMP-PKG signaling pathway in ischemic and dilated cardiomyopathy. Heart Vessels. 33:948–957. 2018.PubMed/NCBI View Article : Google Scholar | |
Pleger ST, Boucher M, Most P and Koch WJ: Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy. J Card Fail. 13:401–414. 2007.PubMed/NCBI View Article : Google Scholar | |
Port JD and Bristow MR: Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J Mol Cell Cardiol. 33:887–905. 2001.PubMed/NCBI View Article : Google Scholar | |
Razmara E and Garshasbi M: Whole-exome sequencing identifies R1279X of MYH6 gene to be associated with congenital heart disease. BMC Cardiovasc Disord. 18(137)2018.PubMed/NCBI View Article : Google Scholar | |
Carniel E, Taylor MR, Sinagra G, Di Lenarda A, Ku L, Fain PR, Boucek MM, Cavanaugh J, Miocic S, Slavov D, et al: Alpha-myosin heavy chain: A sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation. 112:54–59. 2005.PubMed/NCBI View Article : Google Scholar | |
Hao E, Zhang G, Mu L, Ma N and Wang T: Establishment of a human MYH6 compound heterozygous knockout hESC line to model cardiomyopathy and congenital heart defects by CRISPR/Cas9 system. Stem Cell Res. 50(102128)2020.PubMed/NCBI View Article : Google Scholar | |
Hershberger RE, Norton N, Morales A, Li D, Siegfried JD and Gonzalez-Quintana J: Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet. 3:155–161. 2010.PubMed/NCBI View Article : Google Scholar | |
Merlo M, Sinagra G, Carniel E, Slavov D, Zhu X, Barbati G, Spezzacatene A, Ramani F, Salcedo E, Di Lenarda A, et al: Poor prognosis of rare sarcomeric gene variants in patients with dilated cardiomyopathy. Clin Transl Sci. 6:424–428. 2013.PubMed/NCBI View Article : Google Scholar | |
Chen JH, Wang LL, Tao L, Qi B, Wang Y, Guo YJ and Miao L: Identification of MYH6 as the potential gene for human ischaemic cardiomyopathy. J Cell Mol Med. 25:10736–10746. 2021.PubMed/NCBI View Article : Google Scholar | |
Chelbi ST, Wilson ML, Veillard AC, Ingles SA, Zhang J, Mondon F, Gascoin-Lachambre G, Doridot L, Mignot TM, Rebourcet R, et al: Genetic and epigenetic mechanisms collaborate to control SERPINA3 expression and its association with placental diseases. Hum Mol Genet. 21:1968–1978. 2012.PubMed/NCBI View Article : Google Scholar | |
Asakura M and Kitakaze M: Global gene expression profiling in the failing myocardium. Circ J. 73:1568–1576. 2009.PubMed/NCBI View Article : Google Scholar | |
Delrue L, Vanderheyden M, Beles M, Paolisso P, Di Gioia G, Dierckx R, Verstreken S, Goethals M, Heggermont W and Bartunek J: Circulating SERPINA3 improves prognostic stratification in patients with a de novo or worsened heart failure. ESC Heart Fail. 8:4780–4790. 2021.PubMed/NCBI View Article : Google Scholar | |
di Salvo TG, Yang KC, Brittain E, Absi T, Maltais S and Hemnes A: Right ventricular myocardial biomarkers in human heart failure. J Card Fail. 21:398–411. 2015.PubMed/NCBI View Article : Google Scholar | |
Jiang Z, Guo N and Hong K: A three-tiered integrative analysis of transcriptional data reveals the shared pathways related to heart failure from different aetiologies. J Cell Mol Med. 24:9085–9096. 2020.PubMed/NCBI View Article : Google Scholar | |
Lok SI, van Mil A, Bovenschen N, van der Weide P, van Kuik J, van Wichen D, Peeters T, Siera E, Winkens B, Sluijter JP, et al: Post-transcriptional regulation of α-1-antichymotrypsin by microRNA-137 in chronic heart failure and mechanical support. Circ Heart Fail. 6:853–861. 2013.PubMed/NCBI View Article : Google Scholar | |
Sanchez-Navarro A, Gonzalez-Soria I, Caldino-Bohn R and Bobadilla NA: An integrative view of serpins in health and disease: The contribution of SerpinA3. Am J Physiol Cell Physiol. 320:C106–C108. 2021.PubMed/NCBI View Article : Google Scholar | |
Gerarduzzi C, Kumar RK, Trivedi P, Ajay AK, Iyer A, Boswell S, Hutchinson JN, Waikar SS and Vaidya VS: Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation. JCI Insight. 2(e90299)2017.PubMed/NCBI View Article : Google Scholar | |
Williams JL, Cavus O, Loccoh EC, Adelman S, Daugherty JC, Smith SA, Canan B, Janssen PML, Koenig S, Kline CF, et al: Defining the molecular signatures of human right heart failure. Life Sci. 196:118–126. 2018.PubMed/NCBI View Article : Google Scholar | |
Laugier L, Frade AF, Ferreira FM, Baron MA, Teixeira PC, Cabantous S, Ferreira LRP, Louis L, Rigaud VOC, Gaiotto FA, et al: Whole-Genome Cardiac DNA methylation fingerprint and gene expression analysis provide new insights in the pathogenesis of chronic chagas disease cardiomyopathy. Clin Infect Dis. 65:1103–1111. 2017.PubMed/NCBI View Article : Google Scholar | |
Luo L, Wang CC, Song XP, Wang HM, Zhou H, Sun Y, Wang XK, Hou S and Pei FY: Suppression of SMOC2 reduces bleomycin (BLM)-induced pulmonary fibrosis by inhibition of TGF-β1/SMADs pathway. Biomed Pharmacother. 105:841–847. 2018.PubMed/NCBI View Article : Google Scholar | |
Schmidt IM, Colona MR, Kestenbaum BR, Alexopoulos LG, Palsson R, Srivastava A, Liu J, Stillman IE, Rennke HG, Vaidya VS, et al: Cadherin-11, Sparc-related modular calcium binding protein-2, and Pigment epithelium-derived factor are promising non-invasive biomarkers of kidney fibrosis. Kidney Int. 100:672–683. 2021.PubMed/NCBI View Article : Google Scholar | |
McLellan MA, Skelly DA, Dona MSI, Squiers GT, Farrugia GE, Gaynor TL, Cohen CD, Pandey R, Diep H, Vinh A, et al: High-resolution transcriptomic profiling of the heart during chronic stress reveals cellular drivers of cardiac fibrosis and hypertrophy. Circulation. 142:1448–1463. 2020.PubMed/NCBI View Article : Google Scholar | |
Agra RM, Fernandez-Trasancos A, Sierra J, Gonzalez-Juanatey JR and Eiras S: Differential association of S100A9, an inflammatory marker, and p53, a cell cycle marker, expression with epicardial adipocyte size in patients with cardiovascular disease. Inflammation. 37:1504–1512. 2014.PubMed/NCBI View Article : Google Scholar | |
Marinkovic G, Koenis DS, de Camp L, Jablonowski R, Graber N, de Waard V, de Vries CJ, Goncalves I, Nilsson J, Jovinge S and Schiopu A: S100A9 links inflammation and repair in myocardial infarction. Circ Res. 127:664–676. 2020.PubMed/NCBI View Article : Google Scholar | |
Pei XM, Tam BT, Sin TK, Wang FF, Yung BY, Chan LW, Wong CS, Ying M, Lai CW and Siu PM: S100A8 and S100A9 are associated with doxorubicin-induced Cardiotoxicity in the heart of diabetic mice. Front Physiol. 7(334)2016.PubMed/NCBI View Article : Google Scholar | |
Shah RD, Xue C, Zhang H, Tuteja S, Li M, Reilly MP and Ferguson JF: Expression of Calgranulin Genes S100A8, S100A9 and S100A12 Is modulated by n-3 PUFA during inflammation in adipose tissue and mononuclear cells. PLoS One. 12(e0169614)2017.PubMed/NCBI View Article : Google Scholar | |
Wei X, Wu B, Zhao J, Zeng Z, Xuan W, Cao S, Huang X, Asakura M, Xu D, Bin J, et al: Myocardial hypertrophic preconditioning attenuates cardiomyocyte hypertrophy and slows progression to heart failure through upregulation of S100A8/A9. Circulation. 131:1506–1517. 2015.PubMed/NCBI View Article : Google Scholar | |
Marinković G, Koenis DS, de Camp L, Jablonowski R, Graber N, de Waard V, de Vries CJ, Goncalves I, Nilsson J, Jovinge S and Schiopu A: S100A9 links inflammation and repair in myocardial infarction. Circ Res. 127:664–676. 2020.PubMed/NCBI View Article : Google Scholar | |
Marinkovic G, Grauen Larsen H, Yndigegn T, Szabo IA, Mares RG, de Camp L, Weiland M, Tomas L, Goncalves I, Nilsson J, et al: Inhibition of pro-inflammatory myeloid cell responses by short-term S100A9 blockade improves cardiac function after myocardial infarction. Eur Heart J. 40:2713–2723. 2019.PubMed/NCBI View Article : Google Scholar | |
Bizou M, Itier R, Majdoubi M, Abbadi D, Pichery E, Dutaur M, Marsal D, Calise D, Garmy-Susini B, Douin-Echinard V, et al: Cardiac macrophage subsets differentially regulate lymphatic network remodeling during pressure overload. Sci Rep. 11(16801)2021.PubMed/NCBI View Article : Google Scholar | |
Vieira JM, Norman S, Villa Del Campo C, Cahill TJ, Barnette DN, Gunadasa-Rohling M, Johnson LA, Greaves DR, Carr CA, Jackson DG and Riley PR: The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J Clin Invest. 128:3402–3412. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Wang D, Peng H, Chen X, Han X, Yu J, Wang W, Liang L, Liu Z, Zheng Y, et al: Epigenetically upregulated oncoprotein PLCE1 drives esophageal carcinoma angiogenesis and proliferation via activating the PI-PLCε-NF-κB signaling pathway and VEGF-C/Bcl-2 expression. Mol Cancer. 18(1)2019.PubMed/NCBI View Article : Google Scholar | |
Li W, Li Y, Chu Y, Wu W, Yu Q, Zhu X and Wang Q: PLCE1 promotes myocardial ischemia-reperfusion injury in H/R H9c2 cells and I/R rats by promoting inflammation. Biosci Rep. 39(BSR20181613)2019.PubMed/NCBI View Article : Google Scholar | |
Youn JC, Jung MK, Yu HT, Kwon JS, Kwak JE, Park SH, Kim IC, Park MS, Lee SK, Choi SW, et al: Increased frequency of CD4+CD57+ senescent T cells in patients with newly diagnosed acute heart failure: Exploring new pathogenic mechanisms with clinical relevance. Sci Rep. 9(12887)2019.PubMed/NCBI View Article : Google Scholar | |
Zeng Z, Wang K, Li Y, Xia N, Nie S, Lv B, Zhang M, Tu X, Li Q, Tang T and Cheng X: Down-regulation of microRNA-451a facilitates the activation and proliferation of CD4+ T cells by targeting Myc in patients with dilated cardiomyopathy. J Biol Chem. 292:6004–6013. 2017.PubMed/NCBI View Article : Google Scholar | |
Rao M, Wang X, Guo G, Wang L, Chen S, Yin P, Chen K, Chen L, Zhang Z, Chen X, et al: Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Res Cardiol. 116(55)2021.PubMed/NCBI View Article : Google Scholar |