1
|
Kumar S, Duan Q, Wu R, Harris EN and Su Q:
Pathophysiological communication between hepatocytes and
non-parenchymal cells in liver injury from NAFLD to liver fibrosis.
Adv Drug Deliv Rev. 176(113869)2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Liebe R, Esposito I, Bock HH, Vom Dahl S,
Stindt J, Baumann U, Luedde T and Keitel V: Diagnosis and
management of secondary causes of steatohepatitis. J Hepatol.
74:1455–1471. 2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Safari Z and Gérard P: The links between
the gut microbiome and non-alcoholic fatty liver disease (NAFLD).
Cell Mol Life Sci. 76:1541–1558. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Chalasani N, Younossi Z, Lavine JE,
Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM and Sanyal AJ:
The diagnosis and management of nonalcoholic fatty liver disease:
Practice guidance from the American Association for the Study of
Liver Diseases. Hepatology. 67:328–357. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Lan T, Hu Y, Hu F, Li H, Chen Y, Zhang J,
Yu Y, Jiang S, Weng Q, Tian S, et al: Hepatocyte glutathione
S-transferase mu 2 prevents non-alcoholic steatohepatitis by
suppressing ASK1 signaling. J Hepatol. 76:407–419. 2022.PubMed/NCBI View Article : Google Scholar
|
6
|
Rohm TV, Meier DT, Olefsky JM and Donath
MY: Inflammation in obesity, diabetes, and related disorders.
Immunity. 55:31–55. 2022.PubMed/NCBI View Article : Google Scholar
|
7
|
Khan RS, Bril F, Cusi K and Newsome PN:
Modulation of insulin resistance in nonalcoholic fatty liver
disease. Hepatology. 70:711–724. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Katsiki N, Mikhailidis DP and Mantzoros
CS: Non-alcoholic fatty liver disease and dyslipidemia: An update.
Metabolism. 65:1109–1123. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Farzanegi P, Dana A, Ebrahimpoor Z, Asadi
M and Azarbayjani MA: Mechanisms of beneficial effects of exercise
training on non-alcoholic fatty liver disease (NAFLD): Roles of
oxidative stress and inflammation. Eur J Sport Sci. 19:994–1003.
2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Mohammed S, Nicklas EH, Thadathil N,
Selvarani R, Royce GH, Kinter M, Richardson A and Deepa SS: Role of
necroptosis in chronic hepatic inflammation and fibrosis in a mouse
model of increased oxidative stress. Free Radic Biol Med.
164:315–328. 2021.PubMed/NCBI View Article : Google Scholar
|
11
|
Huang X, Wang Y, Zhang Z, Wang Y, Chen X,
Wang Y and Gao Y: Ophiopogonin D and EETs ameliorate Ang II-induced
inflammatory responses via activating PPARα in HUVECs. Biochem
Biophys Res Commun. 490:123–133. 2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Kou J, Tian Y, Tang Y, Yan J and Yu B:
Antithrombotic activities of aqueous extract from Radix Ophiopogon
japonicus and its two constituents. Biol Pharm Bull. 29:1267–1270.
2006.PubMed/NCBI View Article : Google Scholar
|
13
|
Kou J, Sun Y, Lin Y, Cheng Z, Zheng W, Yu
B and Xu Q: Anti-inflammatory activities of aqueous extract from
Radix Ophiopogon japonicus and its two constituents. Biol Pharm
Bull. 28:1234–1238. 2005.PubMed/NCBI View Article : Google Scholar
|
14
|
Qiao Y, Jiao H, Wang F and Niu H:
Ophiopogonin D of Ophiopogon japonicus ameliorates renal function
by suppressing oxidative stress and inflammatory response in
streptozotocin-induced diabetic nephropathy rats. Braz J Med Biol
Res. 53(e9628)2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Li W, Ji L, Tian J, Tang W, Shan X, Zhao
P, Chen H, Zhang C, Xu M, Lu R and Guo W: Ophiopogonin D alleviates
diabetic myocardial injuries by regulating mitochondrial dynamics.
J Ethnopharmacol. 271(113853)2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Qin Y, Dong H, Sun J, Zhang Y, Li J, Zhang
T, Chen G, Wang S, Song S, Wang W, et al: Evaluation of MTBH, a
novel hesperetin derivative, on the activity of hepatic cytochrome
P450 isoform in vitro and in vivo using a cocktail method by
HPLC-MS/MS. Xenobiotica. 51:1389–1399. 2021.PubMed/NCBI View Article : Google Scholar
|
17
|
Ma L, Wei S, Yang B, Ma W, Wu X, Ji H, Sui
H and Chen J: Chrysosplenetin inhibits artemisinin efflux in
P-gp-over-expressing Caco-2 cells and reverses P-gp/MDR1 mRNA
up-regulated expression induced by artemisinin in mouse small
intestine. Pharm Biol. 55:374–380. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
19
|
Donaldson JG: Immunofluorescence staining.
Curr Protoc Cell Biol. Chapter 4(Unit 4.3)2001.PubMed/NCBI View Article : Google Scholar
|
20
|
Zandani G, Anavi-Cohen S, Yudelevich T,
Nyska A, Dudai N, Madar Z and Gorelick J: Chiliadenus iphionoides
Reduces body weight and improves parameters related to hepatic
lipid and glucose metabolism in a high-fat-diet-induced mice model
of NAFLD. Nutrients. 14(4552)2022.PubMed/NCBI View Article : Google Scholar
|
21
|
Wu YK, Ren ZN, Zhu SL, Wu YZ, Wang G,
Zhang H, Chen W, He Z, Ye XL and Zhai QX: Sulforaphane ameliorates
non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1
signaling pathway. Acta Pharmacol Sin. 43:1473–1483.
2022.PubMed/NCBI View Article : Google Scholar
|
22
|
Arroyave-Ospina JC, Wu Z, Geng Y and
Moshage H: Role of oxidative stress in the pathogenesis of
non-alcoholic fatty liver disease: Implications for prevention and
therapy. Antioxidants (Basel). 10(174)2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Zhang X, Shang X, Jin S, Ma Z, Wang H, Ao
N, Yang J and Du J: Vitamin D ameliorates high-fat-diet-induced
hepatic injury via inhibiting pyroptosis and alters gut microbiota
in rats. Arch Biochem Biophys. 705(108894)2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Wang Y, Huang X, Ma Z, Wang Y, Chen X and
Gao Y: Ophiopogonin D alleviates cardiac hypertrophy in rat by
upregulating CYP2J3 in vitro and suppressing inflammation in vivo.
Biochem Biophys Res Commun. 503:1011–1019. 2018.PubMed/NCBI View Article : Google Scholar
|
25
|
De Gregorio E, Colell A, Morales A and
Marí M: Relevance of SIRT1-NF-κB Axis as therapeutic target to
ameliorate inflammation in liver disease. Int J Mol Sci.
21(3858)2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Bansod S, Saifi MA and Godugu C: Molecular
updates on berberine in liver diseases: Bench to bedside. Phytother
Res. 35:5459–5476. 2021.PubMed/NCBI View
Article : Google Scholar
|
27
|
Bagherniya M, Nobili V, Blesso CN and
Sahebkar A: Medicinal plants and bioactive natural compounds in the
treatment of non-alcoholic fatty liver disease: A clinical review.
Pharmacol Res. 130:213–240. 2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Wang Y, Li D, Song L and Ding H:
Ophiopogonin D attenuates PM2.5-induced inflammation via
suppressing the AMPK/NF-κB pathway in mouse pulmonary epithelial
cells. Exp Ther Med. 20(139)2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Qian J, Jiang F, Wang B, Yu Y, Zhang X,
Yin Z and Liu C: Ophiopogonin D prevents H2O2-induced injury in
primary human umbilical vein endothelial cells. J Ethnopharmacol.
128:438–445. 2010.PubMed/NCBI View Article : Google Scholar
|
30
|
Eslam M, Sanyal AJ and George J:
International Consensus Panel. MAFLD: A consensus-driven proposed
nomenclature for metabolic associated fatty liver disease.
Gastroenterology. 158:1999–2014.e1. 2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Godoy-Matos AF, Silva Júnior WS and
Valerio CM: NAFLD as a continuum: From obesity to metabolic
syndrome and diabetes. Diabetol Metab Syndr. 12(60)2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Wasilewska N and Lebensztejn DM:
Non-alcoholic fatty liver disease and lipotoxicity. Clin Exp
Hepatol. 7:1–6. 2010.PubMed/NCBI View Article : Google Scholar
|
33
|
Fujii H and Kawada N: Japan Study Group of
Nafld Jsg-Nafld. The role of insulin resistance and diabetes in
nonalcoholic fatty liver disease. Int J Mol Sci.
21(3863)2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Rhee EJ: Nonalcoholic fatty liver disease
and diabetes: An epidemiological perspective. Endocrinol Metab
(Seoul). 34:226–233. 2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Ma Y, Lee G, Heo SY and Roh YS: Oxidative
stress is a key modulator in the development of nonalcoholic fatty
liver disease. Antioxidants (Basel). 11(91)2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Li Q, Tan JX, He Y, Bai F, Li SW, Hou YW,
Ji LS, Gao YT, Zhang X, Zhou ZH, et al: Atractylenolide III
ameliorates non-alcoholic fatty liver disease by activating Hepatic
Adiponectin Receptor 1-Mediated AMPK Pathway. Int J Biol Sci.
18:1594–1611. 2022.PubMed/NCBI View Article : Google Scholar
|
37
|
Irie M, Sohda T, Anan A, Fukunaga A,
Takata K, Tanaka T, Yokoyama K, Morihara D, Takeyama Y, Shakado S
and Sakisaka S: Reduced glutathione suppresses oxidative stress in
nonalcoholic fatty liver disease. Euroasian J Hepatogastroenterol.
6:13–18. 2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Polimeni L, Del Ben M, Baratta F, Perri L,
Albanese F, Pastori D, Violi F and Angelico F: Oxidative stress:
New insights on the association of non-alcoholic fatty liver
disease and atherosclerosis. World J Hepatol. 7:1325–1336.
2015.PubMed/NCBI View Article : Google Scholar
|
39
|
Yang Y, Lu Y, Han F, Chang Y, Li X, Han Z,
Xue M, Cheng Y, Sun B and Chen L: Saxagliptin regulates M1/M2
macrophage polarization via CaMKKβ/AMPK pathway to attenuate NAFLD.
Biochem Biophys Res Commun. 503:1618–1624. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Luo P, Qin C, Zhu L, Fang C, Zhang Y,
Zhang H, Pei F, Tian S, Zhu XY, Gong J, et al: Ubiquitin-Specific
Peptidase 10 (USP10) inhibits hepatic steatosis, insulin
resistance, and inflammation through Sirt6. Hepatology.
68:1786–1803. 2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Castoldi A, Naffah De Souza C, Câmara NO
and Moraes-Vieira PM: The macrophage switch in obesity development.
Front Immunol. 6(637)2015.PubMed/NCBI View Article : Google Scholar
|
42
|
Tang XL, Lin Y, Wang YG and Gao Y: Effects
of ophiopogonin D on fatty acid metabolic enzymes in
cardiomyocytes. Zhongguo Zhong Yao Za Zhi. 46:3672–3677.
2021.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
43
|
Wu FM, Yang HY, Yang RS, Li M, Bao XH and
Zhou J: Study on Quality Evaluation of Ophiopogonis Radix in
Sichuan. Zhong Yao Cai. 39:1803–1808. 2016.PubMed/NCBI(In Chinese).
|
44
|
Xu HH, Jiang ZH, Sun YT, Qiu LZ, Xu LL,
Tang XL, Ma ZC and Gao Y: Differences in the hemolytic behavior of
two isomers in ophiopogon japonicus in vitro and in vivo and their
risk warnings. Oxid Med Cell Longev. 2020(8870656)2020.PubMed/NCBI View Article : Google Scholar
|