1
|
References
Tian H, Xiong Y, Zhang Y, Leng
Y, Tao J, Li L, Qiu Z and Xia Z: Activation of NRF2/FPN1 pathway
attenuates myocardial ischemia-reperfusion injury in diabetic rats
by regulating iron homeostasis and ferroptosis. Cell Stress
Chaperones. 27:149–164. 2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Wei X, Deng W, Dong Z, Xie Z, Zhang J,
Wang R, Zhang R, Na N and Zhou Y: Identification of subtypes and a
delayed graft function predictive signature based on ferroptosis in
renal ischemia-reperfusion injury. Front Cell Dev Biol.
10(800650)2022.PubMed/NCBI View Article : Google Scholar
|
3
|
Bardallo RG, Panisello-Roselló A,
Sanchez-Nuno S, Alva N, Roselló-Catafau J and Carbonell T: Nrf2 and
oxidative stress in liver ischemia/reperfusion injury. FEBS J.
289:5463–5479. 2022.PubMed/NCBI View Article : Google Scholar
|
4
|
Patel PM, Connolly MR, Coe TM, Calhoun A,
Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC and
Pierson RN*III: Minimizing ischemia reperfusion injury in
xenotransplantation. Front Immunol. 12(681504)2021.PubMed/NCBI View Article : Google Scholar
|
5
|
Chatauret N, Badet L, Barrou B and Hauet
T: Ischemia-reperfusion: From cell biology to acute kidney injury.
Prog Urol. 24 (Suppl 1):S4–S12. 2014.PubMed/NCBI View Article : Google Scholar
|
6
|
Zhao H, Alam A, Soo AP, George A and Ma D:
Ischemia-reperfusion injury reduces long term renal graft survival:
Mechanism and beyond. EBioMedicine. 28:31–42. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Bonventre JV and Yang L: Cellular
pathophysiology of ischemic acute kidney injury. J Clin Invest.
121:4210–4221. 2011.PubMed/NCBI View
Article : Google Scholar
|
8
|
Shen Y, Qiu T, Liu XH, Zhang L, Wang ZS
and Zhou JQ: Renal ischemia-reperfusion injury attenuated by
splenic ischemic preconditioning. Eur Rev Med Pharmacol Sci.
22:2134–2142. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Kinra M, Mudgal J, Arora D and Nampoothiri
M: An insight into the role of cyclooxygenase and lipooxygenase
pathway in renal ischemia. Eur Rev Med Pharmacol Sci. 21:5017–5020.
2017.PubMed/NCBI
|
10
|
Rodriguez F, Bonacasa B, Fenoy FJ and
Salom MG: Reactive oxygen and nitrogen species in the renal
ischemia/reperfusion injury. Curr Pharm Design. 19:2776–2794.
2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Rong L, Li Z, Leng X, Li H, Ma Y, Chen Y
and Song F: Salidroside induces apoptosis and protective autophagy
in human gastric cancer AGS cells through the PI3K/Akt/mTOR
pathway. Biomed Pharmacother. 122(109726)2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Yuan Y, Wang Z, Nan B, Yang C, Wang M, Ye
H, Xi C, Zhang Y and Yan H: Salidroside alleviates liver
inflammation in furan-induced mice by regulating oxidative stress
and endoplasmic reticulum stress. Toxicology.
461(152905)2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Zhang P, Xu J, Cui Q, Lin G, Wang F, Ding
X, You S, Sang N, Tan J, Xu W, et al: Multi-pathway neuroprotective
effects of a novel salidroside derivative SHPL-49 against acute
cerebral ischemic injury. Eur J Pharmacol.
949(175716)2023.PubMed/NCBI View Article : Google Scholar
|
14
|
Jiang S, Fan F, Yang L, Chen K, Sun Z,
Zhang Y, Cairang N, Wang X and Meng X: Salidroside attenuates high
altitude hypobaric hypoxia-induced brain injury in mice via
inhibiting NF-κB/NLRP3 pathway. Eur J Pharmacol.
925(175015)2022.PubMed/NCBI View Article : Google Scholar
|
15
|
Wang X, Tang Y, Xie N, Bai J, Jiang S,
Zhang Y, Hou Y and Meng X: Salidroside, a phenyl ethanol glycoside
from Rhodiola crenulata, orchestrates hypoxic mitochondrial
dynamics homeostasis by stimulating Sirt1/p53/Drp1 signaling. J
Ethnopharmacol. 293(115278)2022.PubMed/NCBI View Article : Google Scholar
|
16
|
Qi C, Zhang J, Chen X, Zhang J, Yang P,
Jiao Q, Zhang P, Lu HX and Liu Y: Salidroside protects cultured rat
subventricular zone neural stem cells against hypoxia injury by
inhibiting Bax, Bcl-2 and caspase-3 expressions. Nan Fang Yi Ke Da
Xue Xue Bao. 33:962–966. 2013.PubMed/NCBI(In Chinese).
|
17
|
Issue Information-Declaration of Helsinki.
J Bone Miner Res. 34:BMi–BMii. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Paller MS: Free radical-mediated
postischemic injury in renal transplantation. Ren Fail. 14:257–260.
1992.PubMed/NCBI View Article : Google Scholar
|
19
|
Mancardi D, Mezzanotte M, Arrigo E,
Barinotti A and Roetto A: Iron overload, oxidative stress, and
ferroptosis in the failing heart and liver. Antioxidants (Basel).
10(1864)2021.PubMed/NCBI View Article : Google Scholar
|
20
|
Ren JX, Li C, Yan XL, Qu Y, Yang Y and Guo
ZN: Crosstalk between oxidative stress and ferroptosis/oxytosis in
ischemic stroke: Possible targets and molecular mechanisms. Oxid
Med Cell Longev. 2021(6643382)2021.PubMed/NCBI View Article : Google Scholar
|
21
|
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G,
Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death
connecting oxidative stress, inflammation and cardiovascular
diseases. Cell Death Discov. 7(193)2021.PubMed/NCBI View Article : Google Scholar
|
22
|
Brinckmann JA, Cunningham AB and Harter D:
Running out of time to smell the roseroots: Reviewing threats and
trade in wild Rhodiola rosea L. J Ethnopharmacol.
269(113710)2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Langeder J, Grienke U, Döring K, Jafari M,
Ehrhardt C, Schmidtke M and Rollinger JM: High-performance
countercurrent chromatography to access Rhodiola rosea
influenza virus inhibiting constituents. Planta Med. 87:818–826.
2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Rattan S, Kumar A, Kumar D and Warghat AR:
Enhanced production of phenylethanoids mediated through synergistic
approach of precursor feeding and light regime in cell suspension
culture of Rhodiola imbricata (Edgew.). Appl Biochem Biotech.
194:3242–3260. 2022.PubMed/NCBI View Article : Google Scholar
|
25
|
Li Y, Pham V, Bui M, Song L, Wu C, Walia
A, Uchio E, Smith-Liu F and Zi X: Rhodiola rosea L.: An herb
with anti-stress, anti-aging, and immunostimulating properties for
cancer chemoprevention. Curr Pharmacol Rep. 3:384–395.
2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Labachyan KE, Kiani D, Sevrioukov EA,
Schriner SE and Jafari M: The impact of Rhodiola rosea on
the gut microbial community of Drosophila melanogaster. Gut Pathog.
10(12)2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Ma Y, Wu Y, Xia Z, Li J, Li X, Xu P, Zhou
X and Xue M: Anti-hypoxic molecular mechanisms of Rhodiola
crenulata extract in zebrafish as revealed by metabonomics.
Front Pharmacol. 10(1356)2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Wang X, Hou Y, Li Q, Li X, Wang W, Ai X,
Kuang T, Chen X, Zhang Y, Zhang J, et al: Rhodiola crenulata
attenuates apoptosis and mitochondrial energy metabolism disorder
in rats with hypobaric hypoxia-induced brain injury by regulating
the HIF-1α/microRNA 210/ISCU1/2(COX10) signaling pathway. J
Ethnopharmacol. 241(111801)2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Xie N, Fan F, Jiang S, Hou Y, Zhang Y,
Cairang N, Wang X and Meng X: Rhodiola crenulate alleviates
hypobaric hypoxia-induced brain injury via adjusting
NF-κB/NLRP3-mediated inflammation. Phytomedicine.
103(154240)2022.PubMed/NCBI View Article : Google Scholar
|
30
|
Dong C, Wen S, Zhao S, Sun S, Zhao S, Dong
W, Han P, Chen Q, Gong T, Chen W, et al: Salidroside inhibits
reactive astrogliosis and glial scar formation in late cerebral
ischemia via the Akt/GSK-3β pathway. Neurochem Res. 46:755–769.
2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Tian X, Huang Y, Zhang X, Fang R, Feng Y,
Zhang W, Li L and Li T: Salidroside attenuates myocardial
ischemia/reperfusion injury via AMPK-induced suppression of
endoplasmic reticulum stress and mitochondrial fission. Toxicol
Appl Pharm. 448(116093)2022.PubMed/NCBI View Article : Google Scholar
|
32
|
Yin L, Ouyang D, Lin L, Xin X and Ji Y:
Salidroside regulates imbalance of Th17/Treg and promotes ischemic
tolerance by targeting STAT-3 in cerebral ischemia-reperfusion
injury. Arch Med Sci. 17:523–534. 2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Han SJ and Lee HT: Mechanisms and
therapeutic targets of ischemic acute kidney injury. Kidney Res
Clin Prac. 38:427–440. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Baltaci AK, Gokbudak H, Baltaci SB,
Mogulkoc R and Avunduk MC: The effects of resveratrol
administration on lipid oxidation in experimental renal
ischemia-reperfusion injury in rats. Biotech Histochem. 94:592–599.
2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Li Y, Zhong D, Lei L, Jia Y, Zhou H and
Yang B: Propofol prevents renal ischemia-reperfusion injury via
inhibiting the oxidative stress pathways. Cell Physiol Biochem.
37:14–26. 2015.PubMed/NCBI View Article : Google Scholar
|
36
|
Qiao X, Li RS, Li H, Zhu GZ, Huang XG,
Shao S and Bai B: Intermedin protects against renal
ischemia-reperfusion injury by inhibition of oxidative stress. Am J
Physiol Renal Physiol. 304:F112–F119. 2013.PubMed/NCBI View Article : Google Scholar
|
37
|
Manning BD and Toker A: AKT/PKB signaling:
Navigating the network. Cell. 169:381–405. 2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Singh CK, Chhabra G, Ndiaye MA, Siddiqui
IA, Panackal JE, Mintie CA and Ahmad N: Quercetin-resveratrol
combination for prostate cancer management in TRAMP mice. Cancers
(Basel). 12(2141)2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Ahsan A, Liu M, Zheng Y, Yan W, Pan L, Li
Y, Ma S, Zhang X, Cao M, Wu Z, et al: Natural compounds modulate
the autophagy with potential implication of stroke. Acta Pharm Sin
B. 11:1708–1720. 2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Zhu L, Liu Z, Ren Y, Wu X, Liu Y, Wang T,
Li Y, Cong Y and Guo Y: Neuroprotective effects of salidroside on
ageing hippocampal neurons and naturally ageing mice via the
PI3K/Akt/TERT pathway. Phytother Res. 35:5767–5780. 2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Wu Y, Jiao H, Yue Y, He K, Jin Y, Zhang J,
Zhang J, Wei Y, Luo H, Hao Z, et al: Ubiquitin ligase E3 HUWE1/MULE
targets transferrin receptor for degradation and suppresses
ferroptosis in acute liver injury. Cell Death Differ. 29:1705–1718.
2022.PubMed/NCBI View Article : Google Scholar
|
42
|
Su L, Jiang X, Yang C, Zhang J, Chen B, Li
Y, Yao S, Xie Q, Gomez H, Murugan R and Peng Z: Pannexin 1 mediates
ferroptosis that contributes to renal ischemia/reperfusion injury.
J Biol Chem. 294:19395–19404. 2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Li C, Sun G, Chen B, Xu L, Ye Y, He J, Bao
Z, Zhao P, Miao Z, Zhao L, et al: Nuclear receptor coactivator
4-mediated ferritinophagy contributes to cerebral ischemia-induced
ferroptosis in ischemic stroke. Pharmacol Res.
174(105933)2021.PubMed/NCBI View Article : Google Scholar
|
44
|
Fang X, Wang H, Han D, Xie E, Yang X, Wei
J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for
protection against cardiomyopathy. Proc Natl Acad Sci USA.
116:2672–2680. 2019.PubMed/NCBI View Article : Google Scholar
|