1
|
Jha V, Garcia-Garcia G, Iseki K, Li Z,
Naicker S, Plattner B, Saran R, Wang AY and Yang CW: Chronic kidney
disease: Global dimension and perspectives. Lancet. 382:260–272.
2013.PubMed/NCBI View Article : Google Scholar
|
2
|
Yang C, Wang H, Zhao X, Matsushita K,
Coresh J, Zhang L and Zhao MH: CKD in China: Evolving spectrum and
public health implications. Am J Kidney Dis. 76:258–264.
2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Zhang L, Long J, Jiang W, Shi Y, He X,
Zhou Z, Li Y, Yeung RO, Wang J, Matsushita K, et al: Trends in
chronic kidney disease in China. N Engl J Med. 375:905–906.
2016.PubMed/NCBI View Article : Google Scholar
|
4
|
World Health Organization. The top 10
causes of death. WHO. 2020-12-09.
|
5
|
Morton RL and Shah KK: Kidney health in
the context of economic development. Nat Rev Nephrol. 17:5–6.
2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Luyckx VA, Cherney DZI and Bello AK:
Preventing CKD in developed countries. Kidney Int Rep. 5:263–277.
2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Fu H, Liu S, Bastacky SI, Wang X, Tian XJ
and Zhou D: Diabetic kidney diseases revisited: A new perspective
for a new era. Mol Metab. 30:250–263. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Wei PZ and Szeto CC: Mitochondrial
dysfunction in diabetic kidney disease. Clin Chim Acta.
496:108–116. 2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Bhargava P and Schnellmann RG:
Mitochondrial energetics in the kidney. Nat Rev Nephrol.
13:629–646. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Schiffer TA and Friederich-Persson M:
Mitochondrial reactive oxygen species and kidney hypoxia in the
development of diabetic nephropathy. Front Physiol.
8(211)2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Miranda-Diaz AG, Pazarin-Villasenor L,
Yanowsky-Escatell FG and Andrade-Sierra J: Oxidative stress in
diabetic nephropathy with early chronic kidney disease. J Diabetes
Res. 2016(7047238)2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Tang Z, Zeng F and Zhang XZ: Human
genetics of diabetic nephropathy. Ren Fail. 37:363–371.
2015.PubMed/NCBI View Article : Google Scholar
|
13
|
Che R, Yuan Y, Huang S and Zhang A:
Mitochondrial dysfunction in the pathophysiology of renal diseases.
Am J Physiol Renal Physiol. 306:F367–F378. 2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Galvan DL, Green NH and Danesh FR: The
hallmarks of mitochondrial dysfunction in chronic kidney disease.
Kidney Int. 92:1051–1057. 2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhang M, Zhang Y, Wu M, Li Z and Li X, Liu
Z, Hu W, Liu H and Li X: Importance of urinary mitochondrial DNA in
diagnosis and prognosis of kidney diseases. Mitochondrion.
61:174–178. 2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Wei PZ, Kwan BC, Chow KM, Cheng PM, Luk
CC, Li PK and Szeto CC: Urinary mitochondrial DNA level is an
indicator of intra-renal mitochondrial depletion and renal scarring
in diabetic nephropathy. Nephrol Dial Transplant. 33:784–788.
2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Wei Z, Kwan BC, Chow KM, Cheng PM, Luk CC,
Lai KB, Li PK and Szeto CC: Urinary mitochondrial DNA level as a
biomarker of tissue injury in non-diabetic chronic kidney diseases.
BMC Nephrol. 19(367)2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Padilla-Martinez F, Wojciechowska G,
Szczerbinski L and Kretowski A: Circulating nucleic acid-based
biomarkers of type 2 diabetes. Int J Mol Sci.
23(295)2021.PubMed/NCBI View Article : Google Scholar
|
19
|
Alberti KG and Zimmet PZ: Definition,
diagnosis and classification of diabetes mellitus and its
complications. Part 1: Diagnosis and classification of diabetes
mellitus. Provisional report of a WHO consultation. Diabetic Med.
15:539–553. 1998.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhang WZ, Rice MC, Hoffman KL, Oromendia
C, Barjaktarevic IZ, Wells JM, Hastie AT, Labaki WW, Cooper CB,
Comellas AP, et al: Association of urine mitochondrial DNA with
clinical measures of COPD in the SPIROMICS cohort. JCI insight.
5(e133984)2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Żyłka A, Gala-Błądzińska A, Rybak K,
Dumnicka P, Drożdż R and Kuśnierz-Cabala B: Role of new biomarkers
for the diagnosis of nephropathy associated with diabetes type 2.
Folia Med Cracov. 55:21–33. 2015.PubMed/NCBI
|
22
|
Kim K, Lee J, Park J, Lee E, Moon J, Lee
S, Lee JS, Kim JH and Kim HS: Identification of novel biomarker for
early detection of diabetic nephropathy. Biomedicines.
9(457)2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Satirapoj B: Tubulointerstitial biomarkers
for diabetic nephropathy. J Diabetes Res.
2018(2852398)2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Fiseha T: Urinary biomarkers for early
diabetic nephropathy in type 2 diabetic patients. Biomark Res.
3(16)2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Yu SM and Bonventre JV: Acute kidney
injury and progression of diabetic kidney disease. Adv Chronic
Kidney Dis. 25:166–180. 2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Higgins GC and Coughlan MT: Mitochondrial
dysfunction and mitophagy: The beginning and end to diabetic
nephropathy? Br J Pharmacol. 171:1917–1942. 2014.PubMed/NCBI View Article : Google Scholar
|
27
|
Said SM and Nasr SH: Silent diabetic
nephropathy. Kidney Int. 90:24–26. 2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Lee S and Choi ME: Urinary biomarkers for
early diabetic nephropathy: Beyond albuminuria. Pediatr Nephrol.
30:1063–1075. 2014.PubMed/NCBI View Article : Google Scholar
|
29
|
Czajka A, Ajaz S, Gnudi L, Parsade CK,
Jones P, Reid F and Malik AN: Altered mitochondrial function,
mitochondrial DNA and reduced metabolic flexibility in patients
with diabetic nephropathy. EBioMedicine. 2:499–512. 2015.PubMed/NCBI View Article : Google Scholar
|
30
|
Zhang WZ, Rice MC, Hoffman KL, Oromendia
C, Barjaktarevic IZ, Wells JM, Hastie AT, Labaki WW, Cooper CB,
Comellas AP, et al: Association of urine mitochondrial DNA with
clinical measures of COPD in the SPIROMICS cohort. JCI Insight.
5(e133984)2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Lu T and Li J: Clinical applications of
urinary cell-free DNA in cancer: Current insights and promising
future. Am J Cancer Res. 7:2318–2332. 2017.PubMed/NCBI
|
32
|
Gluhovschi C, Gluhovschi G, Petrica L,
Timar R, Velciov S, Ionita I, Kaycsa A and Timar B: Urinary
biomarkers in the assessment of early diabetic nephropathy. J
Diabetes Res. 2016(4626125)2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Oka T, Hikoso S, Yamaguchi O, Taneike M,
Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, et
al: Mitochondrial DNA that escapes from autophagy causes
inflammation and heart failure. Nature. 485:251–255.
2012.PubMed/NCBI View Article : Google Scholar
|
34
|
Chang HW, Tsui KH, Shen LC, Huang HW, Wang
SN and Chang PL: Urinary cell-free DNA as a potential tumor marker
for bladder cancer. Int J Biol Markers. 22:287–294. 2007.PubMed/NCBI View Article : Google Scholar
|
35
|
Chang CC, Chiu PF, Wu CL, Kuo CL, Huang
CS, Liu CS and Huang CH: Urinary cell-free mitochondrial and
nuclear deoxyribonucleic acid correlates with the prognosis of
chronic kidney diseases. BMC Nephrol. 20(391)2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Eirin A, Herrmann SM, Saad A, Abumoawad A,
Tang H, Lerman A, Textor SC and Lerman LO: Urinary mitochondrial
DNA copy number identifies renal mitochondrial injury in
renovascular hypertensive patients undergoing renal
revascularization: A pilot study. Acta Physiol (Oxf).
226(e13267)2019.PubMed/NCBI View Article : Google Scholar
|
37
|
Kustanovich A, Schwartz R, Peretz T and
Grinshpun A: Life and death of circulating cell-free DNA. Cancer
Biol Ther. 20:1057–1067. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Cao H, Wu J, Luo J, Chen X, Yang J and
Fang L: Urinary mitochondrial DNA: A potential early biomarker of
diabetic nephropathy. Diabetes Metab Res Rev.
35(e3131)2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Lin Y, Chang Y, Yang S, Wu K and Chu T:
Update of pathophysiology and management of diabetic kidney
disease. J Formos Med Assoc. 117:662–675. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Ceriello A, Ihnat MA and Thorpe JE:
Clinical review 2: The ‘metabolic memory’: is more than just tight
glucose control necessary to prevent diabetic complications? J Clin
Endocrinol Metab. 94:410–415. 2009.PubMed/NCBI View Article : Google Scholar
|