Comparative efficiency of differential diagnostic methods for the identification of BRAF V600E gene mutation in papillary thyroid cancer (Review)
- Authors:
- Qian Liu
- Xue Jiang
- Wenling Tu
- Lina Liu
- Ying Huang
- Yuxiao Xia
- Xuliang Xia
- Yuhong Shi
-
Affiliations: Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China, Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China - Published online on: February 20, 2024 https://doi.org/10.3892/etm.2024.12437
- Article Number: 149
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020.PubMed/NCBI View Article : Google Scholar | |
Li M, Maso LD and Vaccarella S: Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diabetes Endocrinol. 8:468–470. 2020.PubMed/NCBI View Article : Google Scholar | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI View Article : Google Scholar | |
Jegerlehner S, Bulliard JL, Aujesky D, Rodondi N, Germann S, Konzelmann I and Chiolero A: NICER Working Group. Overdiagnosis and overtreatment of thyroid cancer: A population-based temporal trend study. PLoS One. 12(e0179387)2017.PubMed/NCBI View Article : Google Scholar | |
Prescott JD and Zeiger MA: The RET oncogene in papillary thyroid carcinoma. Cancer. 121:2137–2146. 2015.PubMed/NCBI View Article : Google Scholar | |
Raman P and Koenig RJ: Pax-8-PPAR-γ fusion protein in thyroid carcinoma. Nat Rev Endocrinol. 10:616–623. 2014.PubMed/NCBI View Article : Google Scholar | |
Haugen BR: 2015 american thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: What is new and what has changed? Cancer. 123:372–381. 2017.PubMed/NCBI View Article : Google Scholar | |
Cabanillas ME, Mcfadden DG and Durante C: Thyroid cancer. Lancet. 388(2783)2016.PubMed/NCBI View Article : Google Scholar | |
Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW and Sidransky D: BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 95:625–627. 2003.PubMed/NCBI View Article : Google Scholar | |
Delellis RA, Lloyd RV and Heitz PU: Pathology and genetics of tumours of endocrine organs. IARC Press. 2004. | |
Nikiforov YE: Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 135:569–577. 2011.PubMed/NCBI View Article : Google Scholar | |
Xing M: BRAF mutation in papillary thyroid cancer: Pathogenic role, molecular bases, and clinical implications. Endo Rev. 28:742–762. 2007.PubMed/NCBI View Article : Google Scholar | |
Ali KM, Awny S, Ibrahim DA, Metwally IH, Hamdy O, Refky B, Abdallah A and Abdelwahab K: Role of P53, E-cadherin and BRAF as predictors of regional nodal recurrence for papillary thyroid cancer. Ann Diagno Pathol. 40:59–65. 2019.PubMed/NCBI View Article : Google Scholar | |
Ahmed AU, Sarvestani ST, Gantier MP, Williams BR and Hannigan GE: Integrin-linked kinase modulates lipopolysaccharide- and helicobacter pylori-induced nuclear factor κB-activated tumor necrosis factor-α production via regulation of p65 serine 536 phosphorylation. J Biol Chem. 289:27776–27793. 2014.PubMed/NCBI View Article : Google Scholar | |
Yin L, Tang Y, Yu S, Wang C, Xiao M, Wang Y, Liu SJ, Gao L, Huang K and Jin L: The role of BRAF V600E in reducing AUS/FLUS diagnosis in thyroid fine needle aspiration. Endocr Pathol. 30:312–317. 2019.PubMed/NCBI View Article : Google Scholar | |
Tanda ET, Vanni I, Boutros A, Andreotti V, Bruno W, Ghiorzo P and Spagnolo F: Current state of target treatment in BRAF mutated melanoma. Front Mol Biosci. 7(154)2020.PubMed/NCBI View Article : Google Scholar | |
Cheng LY, Haydu LE, Song P, Nie J, Tetzlaff MT, Kwong LN, Gershenwald JE, Davies MA and Zhang DY: High sensitivity sanger sequencing detection of BRAF mutations in metastatic melanoma FFPE tissue specimens. Sci Rep. 11(9043)2021.PubMed/NCBI View Article : Google Scholar | |
Colozza-Gama GA, Callegari F, Bešič N, Paniza ACJ and Cerutti JM: Machine learning algorithm improved automated droplet classification of ddPCR for detection of BRAF V600E in paraffin-embedded samples. Sci Rep. 11(12648)2021.PubMed/NCBI View Article : Google Scholar | |
Lung J, Hung MS, Lin YC, Jiang YY, Fang YH, Lu MS, Hsieh CC, Wang CS, Kuan FC, Lu CH, et al: A highly sensitive and specific real-time quantitative PCR for BRAF V600E/K mutation screening. Sci Rep. 10(16943)2020.PubMed/NCBI View Article : Google Scholar | |
Malicherova B, Burjanivova T, Grendar M, Minarikova E, Bobrovska M, Vanova B, Jasek K, Jezkova E, Kapinova A, Antosova M, et al: Droplet digital PCR for detection of BRAF V600E mutation in formalin-fixed, paraffin-embedded melanoma tissues: A comparison with Cobas((R)) 4800, Sanger sequencing, and allele-specific PCR. Am J Transl Res. 10:3773–3781. 2018.PubMed/NCBI | |
Sutton BC, Birse RT, Maggert K, Ray T, Hobbs J, Ezenekwe A, Kazmierczak J, Mosko M, Kish J, Bullock A, et al: Assessment of common somatic mutations of EGFR, KRAS, BRAF, NRAS in pulmonary non-small cell carcinoma using iPLEX(R) HS, a new highly sensitive assay for the MassARRAY(R) System. PLoS One. 12(e0183715)2017.PubMed/NCBI View Article : Google Scholar | |
Zhu X, Luo Y, Bai Q, Lu Y, Lu Y, Wu L and Zhou X: Specific immunohistochemical detection of the BRAF V600E mutation in primary and metastatic papillary thyroid carcinoma. Exp Mol Pathol. 100:236–241. 2016.PubMed/NCBI View Article : Google Scholar | |
Estrada-Rivadeneyra D: Sanger sequencing. FEBS J. 284(4174)2017.PubMed/NCBI View Article : Google Scholar | |
Xu J and Zhang S: Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci. 20:56–64. 2015.PubMed/NCBI View Article : Google Scholar | |
Sanger F, Sanger F, Nicklen S and Coulson AR: DNA sequencing with chain-terminating inhibitors. Biotechnology. 24:104–108. 1992.PubMed/NCBI | |
Nyrén P: The history of pyrosequencing. Methods Mol Biol. 373:1–14. 2007.PubMed/NCBI View Article : Google Scholar | |
Harrington CT, Lin EI, Olson MT and Eshleman JR: Fundamentals of pyrosequencing. Arch Pathol Lab Med. 137:1296–1303. 2013.PubMed/NCBI View Article : Google Scholar | |
Spittle C, Ward MR, Nathanson KL, Gimotty PA, Rappaport E, Brose MS, Medina A, Letrero R, Herlyn M and Edwards RH: Application of a BRAF pyrosequencing assay for mutation detection and copy number analysis in malignant melanoma. J Mol Diagn. 9:464–471. 2007.PubMed/NCBI View Article : Google Scholar | |
Mcevoy AC, Wood BA, Ardakani NM, Pereira M, Pearce R, Cowell L, Robinson C, Grieu-Iacopetta F, Spicer AJ, Amanuel B, et al: Droplet digital PCR for mutation detection in formalin-fixed, paraffin-embedded melanoma tissues: A comparison with sanger sequencing and pyrosequencing. J Mol Diagn. 20:240–252. 2018.PubMed/NCBI View Article : Google Scholar | |
Ronaghi M, Karamohamed S, Pettersson B, Uhlen M and Nyren P: Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 242:84–89. 1996.PubMed/NCBI View Article : Google Scholar | |
Qingqing Y, Dongyu L, Junfeng S, Shuang S, Rong Y and Qing C: Comparative study of BRAF V600E gene mutation detection methods in paraffin specimens of thyroid papillary carcinoma. Int J Lab Med. 41:1674–1681. 2020. | |
Matsuda K: PCR-based detection methods for single-nucleotide polymorphism or mutation: Real-time PCR and its substantial contribution toward technological refinement. Adv Clin Chem. 80:45–72. 2017.PubMed/NCBI View Article : Google Scholar | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar | |
Tian Q, Wen-ting H, Lei G, Hai-zhen L, Yun L, Ling S, et al: Comparison of real-time PCR method with Sanger sequencing for detection of BRAF muta tion in papillary thyroid carcinoma. J Clin Exp Pathol. 31:756–758. 2015. | |
Yu Y, Xiaohua D, Ying L, Xirun Z and Guangjuan Z: Comparative analysis of detection methods for V600E mutation of B-Raf gene in papillary thyroid cancer. J Clin Exp Pathol. 33:815–816. 2017. | |
Aguilar-Mahecha A, Lafleur J, Brousse S, Savichtcheva O, Holden KA, Faulkner N, McLennan G, Jensen TJ and Basik M: Early, on-treatment levels and dynamic changes of genomic instability in circulating tumor DNA predict response to treatment and outcome in metastatic breast cancer patients. Cancers (Basels). 13(1331)2021.PubMed/NCBI View Article : Google Scholar | |
van Dijk EL, Auger H, Jaszczyszyn Y and Thermes C: Ten years of next-generation sequencing technology. Trends Genet. 30:418–426. 2014.PubMed/NCBI View Article : Google Scholar | |
Leprieur EG, Helias-Rodzewicz Z, Kamga PT, Costantini A, Julie C, Corjon A, Dumenil C, Dumoulin J, Giraud V, Labrune S, et al: Sequential ctDNA whole-exome sequencing in advanced lung adenocarcinoma with initial durable tumor response on immune checkpoint inhibitor and late progression. J Immunother Cancer. 8(e000527)2020.PubMed/NCBI View Article : Google Scholar | |
Beaubier N, Tell R, Lau D, Parsons JR, Bush S, Perera J, Sorrells S, Baker T, Chang A, Michuda J, et al: Clinical validation of the tempus xT next-generation targeted oncology sequencing assay. Oncotarget. 10:2384–2396. 2019.PubMed/NCBI View Article : Google Scholar | |
Glenn TC: Field guide to next-generation DNA sequencers. Mol Ecol Resour. 11:759–769. 2011.PubMed/NCBI View Article : Google Scholar | |
Smallridge RC, Ana-Maria C, Asmann YW, Casler JD, Serie DJ, Reddi HV, Cradic KW, Rivera M, Grebe SK, Necela BM, et al: RNA sequencing identifies multiple fusion transcripts, differentially expressed genes, and reduced expression of immune function genes in BRAF (V600E) mutant vs BRAF wild-type papillary thyroid carcinoma. J Clin Endocrinol Metab. 99:E338–E347. 2014.PubMed/NCBI View Article : Google Scholar | |
Ihle M, Fassunke J, König K, Grünewald I, Schlaak M, Kreuzberg N, Tietze L, Schildhaus HU, Büttner R and Merkelbach-Bruse S: Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional Sanger sequencing for the detection of p.V600E and non-p.V600E BRAF mutations. BMC Cancer. 14(13)2014.PubMed/NCBI View Article : Google Scholar | |
Tetzlaff M, Pattanaprichakul P, Wargo J, Fox P, Patel K, Estrella J, Broaddus RR, Williams MD, Davies MA, Routbort MJ, et al: Utility of BRAF V600E immunohistochemistry expression pattern as a surrogate of BRAF mutation status in 154 patients with advanced melanoma. Hum Pathol. 46:1101–1110. 2015.PubMed/NCBI View Article : Google Scholar | |
Forthun R, Hovland R, Schuster C, Puntervoll H, Brodal H, Namløs H, Aasheim LB, Meza-Zepeda LA, Gjertsen BT, Knappskog S and Straume O: ctDNA detected by ddPCR reveals changes in tumour load in metastatic malignant melanoma treated with bevacizumab. Sci Rep. 9(17471)2019.PubMed/NCBI View Article : Google Scholar | |
Pellecchia S, Sepe R, Federico A, Cuomo M, Credendino S, Pisapia P, Bellevicine C, Nicolau-Neto P, Ramundo MS, Crescenzi E, et al: The Metallophosphoesterase-domain-containing protein 2 (MPPED2) gene acts as tumor suppressor in breast cancer. Cancers (Basel). 11(797)2019.PubMed/NCBI View Article : Google Scholar | |
Yanping X, Yanping J, Jiayi F and Shirong Z: Detection of BRAF gene mutation in papillary thyroid carcinoma by probe amplification block mutation and digital PCR. J Clin Exp Pathol. 37:227–229. 2021. | |
Capper D, Berghoff AS, Magerle M, Ilhan A, Wohrer A, Hackl M, Pichler J, Pusch S, Meyer J, Habel A, et al: Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases. Acta Neuropathol. 123:223–233. 2011.PubMed/NCBI View Article : Google Scholar | |
Koperek O, Kornauth C, Capper D, Berghoff AS, Asari R, Niederle B, von Deimling A, Birner P and Preusser M: Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am J Surg Pathol. 36:844–850. 2012.PubMed/NCBI View Article : Google Scholar | |
Fu G, Chazen RS, MacMillan C and Witterick IJ: Development of a molecular assay for detection and quantification of the BRAF variation in residual tissue from thyroid nodule fine-needle aspiration biopsy specimens. JAMA Netw Open. 4(e2127243)2021.PubMed/NCBI View Article : Google Scholar | |
Rashid FA, Tabassum S, Khan MS, Ansari HR, Asif M, Sheikh AK and Aga SS: VE1 immunohistochemistry is an adjunct tool for detection of BRAF(V600E) mutation: Validation in thyroid cancer patients. J Clin Lab Anal. 35(e23628)2021.PubMed/NCBI View Article : Google Scholar | |
Bullock M, O'Neill C, Chou A, Clarkson A, Dodds T, Toon C, Sywak M, Sidhu SB, Delbridge LW, Robinson BG, et al: Utilization of a MAB for BRAF (V600E) detection in papillary thyroid carcinoma. Endocrin Related Cancer. 19:779–784. 2012.PubMed/NCBI View Article : Google Scholar | |
Zhao J, Liu P, Yu Y, Zhi J, Zheng X, Yu J and Gao M: Comparison of diagnostic methods for the detection of a BRAF mutation in papillary thyroid cancer. Oncol Lett. 17:4661–4666. 2019.PubMed/NCBI View Article : Google Scholar | |
Choden S, Keelawat S, Jung CK and Bychkov A: VE1 immunohistochemistry improves the limit of genotyping for detecting BRAFV600E mutation in papillary thyroid cancer. Cancers (Basel). 12(596)2020.PubMed/NCBI View Article : Google Scholar | |
Colomba E, Helias-Rodzewicz Z, Von Deimling A, Marin C, Terrones N, Pechaud D, Surel S, Côté JF, Peschaud F, Capper D, et al: Detection of BRAF p.V600E mutations in melanomas: Comparison of four methods argues for sequential use of immunohistochemistry and pyrosequencing. J Mol Diagn. 15:94–100. 2013.PubMed/NCBI View Article : Google Scholar | |
Rössle M, Sigg M, Rüschoff JH, Wild PJ, Moch H, Weber A and Rechsteiner M: Ultra-deep sequencing confirms immunohistochemistry as a highly sensitive and specific method for detecting BRAF V600E mutations in colorectal carcinoma. Virchows Arch. 463:623–631. 2013.PubMed/NCBI View Article : Google Scholar | |
Routhier CA, Mochel MC, Lynch K, Dias-Santagata D, Louis DN and Hoang MP: Comparison of 2 monoclonal antibodies for immunohistochemical detection of BRAF V600E mutation in malignant melanoma, pulmonary carcinoma, gastrointestinal carcinoma, thyroid carcinoma, and gliomas. Hum Pathol. 44:2563–2570. 2013.PubMed/NCBI View Article : Google Scholar | |
Mfisher KE, Neill SG, Ehsani L, Caltharp SA, Siddiqui MT and Cohen C: Immunohistochemical Investigation of BRAF p.V600E mutations in thyroid carcinoma using 2 separate BRAF antibodies. Appl Immunohistochem Mol Morphol. 22:562–567. 2014.PubMed/NCBI View Article : Google Scholar | |
Czarniecka A, Oczko-Wojciechowska M and Barczyński M: BRAF V600E mutation in prognostication of papillary thyroid cancer (PTC) recurrence. Gland Surg. 5:495–505. 2016.PubMed/NCBI View Article : Google Scholar | |
Liu LQ, Zhang HY, Xiao-Lia WU, Zhang W, Chen XD and Wang J: Detection of KRAS and BRAF mutations in non-small cell lung cancer by high resolution melting analysis. Chin J Clin Laborat Sci. 2012. | |
Wang Z, Jing C, Cao H, Rong MA and Jianzhong WU: Establishment and primary clinical application of detecting EGFR mutations by high resolution melting analysis. Chin J Surg Oncol. 2014. | |
Junming T, Q L, Xueca W and Guohong Q: Establishment and primary clinical application of detecting BRAF V600E mutations by HRM analysis. Chin J Surg Onco. 9:243–245. 2017. | |
Loes IM, Immervoll H, Angelsen JH, Horn A, Geisler J, Busch C, Lønning PE and Knappskog S: Performance comparison of three BRAF V600E detection methods in malignant melanoma and colorectal cancer specimens. Tumour Biol. 36:1003–1013. 2015.PubMed/NCBI View Article : Google Scholar | |
Tian HX, Zhang XC, Wang Z, Chen JG, Chen SL, Guo WB and Wu YL: Establishment and application of a multiplex genetic mutation-detection method of lung cancer based on MassARRAY platform. Cancer Biol Med. 13:68–76. 2016.PubMed/NCBI View Article : Google Scholar | |
Beckmann JS and Soller M: Restriction fragment length polymorphism in genetic improvement: Methodologies, mapping and costs. Theor Appl Genet. 67:35–43. 1983.PubMed/NCBI View Article : Google Scholar | |
Lin AJ, Samson P, DeWees T, Henke L, Baranski T, Schwarz J, Pfeifer J, Grigsby P and Markovina S: A molecular approach combined with American thyroid association classification better stratifies recurrence risk of classic histology papillary thyroid cancer. Cancer Med. 8:437–446. 2019.PubMed/NCBI View Article : Google Scholar | |
Sezer H, Uren N and Yazici D: Association between BRAF(V600E) mutation and the clinicopathological features in incidental papillary thyroid microcarcinoma: A single-center study in Turkish patients. North Clin Istanb. 7:321–328. 2020.PubMed/NCBI View Article : Google Scholar | |
Orita M, Suzuki Y, Sekiya T and Hayashi K: Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 5:874–879. 1989.PubMed/NCBI View Article : Google Scholar | |
Akhtar MS, Akhter N, Najm MZ, Deo SVS, Shukla NK, Almalki SSR, Alharbi RA, Sindi AAA, Alruwetei A, Ahmad A and Husain SA: Association of mutation and low expression of the CTCF gene with Breast cancer progression. Saudi Pharm J. 28:607–614. 2020.PubMed/NCBI View Article : Google Scholar | |
Anwar M, Malhotra P, Kochhar R, Bhatia A, Mahmood A, Singh R and Mahmood S: TCF 4 tumor suppressor: A molecular target in the prognosis of sporadic colorectal cancer in humans. Cell Mol Biol Lett. 25(24)2020.PubMed/NCBI View Article : Google Scholar | |
Al-Aaraji AJ, Al-Qaysi SA and SalihBaay A: Haplotype in ABCC4 gene by PCR-SSCP technique in Iraqi Asthmatic patients. Journal of Physics Conference Series. 1294(062037)2019. | |
Gogri H, Ray S, Agrawal S, Aruna S, Ghosh K and Gorakshakar A: Heterogeneity of O blood group in India: Peeping through the window of molecular biology. Asian J Transfus Sci. 12:62–68. 2018.PubMed/NCBI View Article : Google Scholar | |
Aliarab A, Yaghmaei B, Ghaderian S, Khoshnia M and Joshaghani HR: Effect of gilbert's syndrome associated polymorphic alleles (rs8175347 and rs4148323) of UDP-glucuronyl transferase on serum bilirubin level. Meta Gene. 26(100788)2020. | |
Al-Thuwaini T: Association between polymorphism in BMP15 and GDF9 genes and impairing female fecundity in diabetes type 2. Middle East Fertility Society J. 25(25)2020. | |
Wang X, Zhang Y, Mei H, An C, Liu C, Zhang Y, Zhang Y and Xin C: Study on the relationship between respiratory distress syndrome and SP-A1 (rs1059057) gene polymorphism in mongolian very premature infants. Front Pediatr. 8(81)2020.PubMed/NCBI View Article : Google Scholar | |
Heidari MM, Khatami M, Danafar A, Dianat T, Farahmand G and Talebi AR: Mitochondrial genetic variation in Iranian infertile men with varicocele. Int J Fertil Steril. 10:303–309. 2016.PubMed/NCBI View Article : Google Scholar | |
Takano H, Shibata T, Nakamura M, Sakurai N, Hayashi T, Ota M, Nomura-Horita T, Hayashi R, Shimasaki T, Otsuka T, et al: Effect of DNMT3A polymorphisms on CpG island hypermethylation in gastric mucosa. BMC Med Gene. 21(205)2020.PubMed/NCBI View Article : Google Scholar | |
Li M, Gao L, Qu L, Sun J, Yuan G, Xia W, Niu J, Fu G and Zhang L: Characteristics of PCR-SSCP and RAPD-HPCE methods for identifying authentication of Penis et testis cervi in traditional Chinese medicine based on cytochrome b gene. Mitochondrial DNA A DNA Mapp Seq Anal. 27:2757–2762. 2015.PubMed/NCBI View Article : Google Scholar | |
Hong B, Winkel A, Stumpp N, Abdallat M, Saryyeva A, Runge J, Stiesch M and Krauss JK: Detection of bacterial DNA on neurostimulation systems in patients without overt infection. Clin Neurol Neurosurg. 184(105399)2019.PubMed/NCBI View Article : Google Scholar | |
Matini M, Rezaie S, Mohebali M, Maghsood AH, Rabiee S, Fallah M and Rezaeian M: Genetic identification of trichomonas vaginalis by using the actin gene and molecular based methods. Iran J Parasitol. 9:329–335. 2014.PubMed/NCBI | |
Hashim HO and Al-Shuhaib MB: Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: A review. J Appl Biotechnol Rep. 6:137–144. 2019. | |
Kakavas KV: Sensitivity and applications of the PCR single-strand conformation polymorphism method. Mol Biol Rep. 48:3629–3635. 2021.PubMed/NCBI View Article : Google Scholar | |
Barbacid M: ras genes. Ann Rev Biochem. 56:779–827. 1986.PubMed/NCBI View Article : Google Scholar | |
Shunbo L, Jingjing H and Dan G: Analysis of clinical risk factors for cervical central lymph node metastasis in papillary thyroid carcinoma. J Jinan Univ (Natural Science & Medicine Edition). 2018;v.39;No.194(06):67-71. | |
Weichao C, Fan Y and Ankui Y: Status quo of preoperative color Doppler ultrasound evaluation of central lymph node metastasis of papillary thyroid cancer in China. Chin J Clin Oncol. 046:1040–1045. 2019. | |
Davies L and Randolph G: Evidence-based evaluation of the thyroid nodule. Otolaryngol Clin North Am. 47:461–474. 2014.PubMed/NCBI View Article : Google Scholar | |
Beisa A, Kvietkauskas M, Beisa V, Stoškus M, Ostanevičiūtė E, Jasiūnas E, Griškevičius L, Šeinin D, Šileikytė A and Strupas K: Significance of BRAF V600E mutation and cytomorphological features for the optimization of papillary thyroid cancer diagnostics in cytologically indeterminate thyroid nodules. Exp Clin Endocrinol Diabetes. 127:247–254. 2019.PubMed/NCBI View Article : Google Scholar | |
Boursault L, Haddad V, Vergier B, Cappellen D, Verdon S, Bellocq JP, Jouary T and Merlio JP: Tumor homogeneity between primary and metastatic sites for braf status in metastatic melanoma determined by immunohistochemical and molecular testing. PLoS One. 8(e70826)2013.PubMed/NCBI View Article : Google Scholar | |
Sithanandam G, Druck T, Cannizzaro LA, Leuzzi G, Huebner K and Rapp UR: B-raf and a B-raf pseudogene are located on 7q in man. Oncogene. 7:795–799. 1992.PubMed/NCBI | |
Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF and de Micco C: Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab. 6:2745–2752. 2003.PubMed/NCBI View Article : Google Scholar | |
Zhu Z, Manoj G, Nikiforova MN, Fischer AH and Nikiforov YE: Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 1:71–77. 2003.PubMed/NCBI View Article : Google Scholar | |
Cantara S, Capezzone M, Marchisotta S, Capuano S, Busonero GP, Toti P, Di Santo A, Caruso G, Carli AF, Brilli L, et al: Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 95:1365–1369. 2010.PubMed/NCBI View Article : Google Scholar | |
Ce Ccherini I, Bocciardi R, Luo Y, Pasini B, Hofstra R, Takahashi M and Romeo G: Exon structure and flanking intronic sequences of the human RET proto-oncogene. Biochem Biophys Res Commun. 196:1288–1295. 1993.PubMed/NCBI View Article : Google Scholar | |
Airaksinen MS, Titievsky A and Saarma M: GDNF family neurotrophic factor signaling: Four masters, one servant? Mol Cell Neurosci. 13:313–325. 1999.PubMed/NCBI View Article : Google Scholar | |
Myers SM, Eng C, Ponder BA and Mulligan LM: Characterization of RET proto-oncogene 3' splicing variants and polyadenylation sites: A novel C-terminus for RET. Oncogene. 11:2039–2045. 1995.PubMed/NCBI | |
Stapleton P, Weith A, Urbanek P, Kozmik Z and Busslinger M: Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nat Genet. 3:292–298. 1993.PubMed/NCBI View Article : Google Scholar | |
Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, et al: International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 58:726–741. 2006.PubMed/NCBI View Article : Google Scholar | |
Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T, Sobrinho LG and Leite V: Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metabol. 8:3947–3952. 2002.PubMed/NCBI View Article : Google Scholar | |
Greco A, Miranda C and Pierotti MA: Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol. 321:44–49. 2010.PubMed/NCBI View Article : Google Scholar | |
Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I and Pierotti MA: Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer. 19:112–123. 1997.PubMed/NCBI | |
Smallridge RC, Marlow LA and Copland JA: Anaplastic thyroid cancer: Molecular pathogenesis and emerging therapies. Endocr Relat Cancer. 16:17–44. 2009.PubMed/NCBI View Article : Google Scholar | |
Li W, Zhou J, Xu L, Su X, Liu Q and Pang H: Identification of genes associated with papillary thyroid carcinoma (PTC) for diagnosis by integrated analysis. Horm Metab Res. 48:226–231. 2016.PubMed/NCBI View Article : Google Scholar | |
Sulaieva O, Chernenko O, Chereshneva Y, Tsomartova D and Larin O: Thyroid stimulating hormone levels and BRAFV600E mutation contribute to pathophysiology of papillary thyroid carcinoma: Relation to outcomes? Pathophysiology. 26:129–135. 2019.PubMed/NCBI View Article : Google Scholar | |
Yanting L, Haiyong Z, Feixing Z, Xulian L and Mengjun H: Consistency of BRAF (V600E) protein expression and gene mutation in papillary thyroid cancer and its clinical significance. J Clin Exp Pathol. 34:42–45. 2018. | |
Martinez JRW, Vargas-Salas S, Gamboa SU, Munoz E, Dominguez JM, Leon A, Droppelmann N, Solar A, Zafereo M, Holsinger FC and González HE: The combination of RET, BRAF and demographic data identifies subsets of patients with aggressive papillary thyroid cancer. Horm Cancer. 10:97–106. 2019.PubMed/NCBI View Article : Google Scholar | |
Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vianello F, Tuttle RM, et al: Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. J Am Med Assoc. 310(535)2013.PubMed/NCBI View Article : Google Scholar | |
Melo M, da Rocha AG, Batista R, Vinagre J, Martins MJ, Costa G, Ribeiro C, Carrilho F, Leite V, Lobo C, et al: TERT, BRAF and NRAS in primary thyroid cancer and metastatic disease. J Clin Endocrinol Metab. 6:1898–1907. 2017.PubMed/NCBI View Article : Google Scholar | |
Hong C, Zequan C and Yongli Y: Research progress of targeted therapy in medullary thyroid carcinoma. J Shanghai Jiaotong University (Medical Science). 31:1470–1474. 2011. | |
Kesby NL, Papachristos AJ, Gild M, Aniss A, Sywak MS, Clifton-Bligh R, Sidhu SB and Glover AR: Outcomes of advanced medullary thyroid carcinoma in the era of targeted therapy. Ann Surg Oncol. 29:64–71. 2022.PubMed/NCBI View Article : Google Scholar | |
Tianle Y, Lisha X, Yutao F, Shuting W, Renqi T and Xin J: Research status on sorafenib combined medication in anapastic thyroid cancer. Chin J Clin Pharmacol. 37(4)2021. | |
Xiaoli H, Zhengjie W and Hua P: Construction of human medullary thyroid carcinoma phage antibody library and preliminary identification. J Chongqing Med University. 38:1040–1043. 2013. | |
Jimei X, Sen Z, Qiong L, Wenbo L and Hua P: Construction and screenning of a natural phage antibody library of human anaplastic thyroid carcinoma. Immunol J. 31:692–696. 2015.PubMed/NCBI View Article : Google Scholar | |
Chunping D, Zhilin L, Chunjun L, Changhong W and Yun M: Gene expression and tumor microenvironment alterations in BARF mutant papillary thyroid carcinoma. Shandong Med J. 60:25–28. 2020. | |
Mehnert JM, Varga A, Brose MS, Aggarwal RR, Lin CC, Prawira A, de Braud F, Tamura K, Doi T, Piha-Paul SA, et al: Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced, PD-L1-positive papillary or follicular thyroid cancer. BMC Cancer. 19(196)2019.PubMed/NCBI View Article : Google Scholar | |
Bai Y, Guo T, Huang X, Wu Q, Niu D, Ji X, Feng Q, Li Z and Kakudo K: In papillary thyroid carcinoma, expression by immunohistochemistry of BRAF V600E, PD-L1, and PD-1 is closely related. Virchows Arch. 472:779–787. 2018.PubMed/NCBI View Article : Google Scholar | |
Trybek T, Walczyk A, Gąsior-Perczak D, Pałyga I, Mikina E, Kowalik A, Hińcza K, Kopczyński J, Chrapek M, Góźdź S and Kowalska A: Impact of BRAF V600E and TERT promoter mutations on response to therapy in papillary thyroid cancer. Endocrinology. 160:2328–2338. 2019.PubMed/NCBI View Article : Google Scholar | |
Landa I and Knauf JA: Mouse models as a tool for understanding progression in BrafV600E-driven thyroid cancers. Endocrinol Metab (Seoul). 34:11–22. 2019.PubMed/NCBI View Article : Google Scholar |