Role of crosstalk between synovial cells and chondrocytes in osteoarthritis (Review)
- Authors:
- Baisen Chen
- Yuyu Sun
- Guanhua Xu
- Jiawei Jiang
- Wenhao Zhang
- Chunshuai Wu
- Pengfei Xue
- Zhiming Cui
-
Affiliations: Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China, Department of Orthopedics, Nantong Third People's Hospital, Nantong, Jiangsu 226003, P.R. China, Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China - Published online on: March 15, 2024 https://doi.org/10.3892/etm.2024.12490
- Article Number: 201
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sanchez-Lopez E, Coras R, Torres A, Lane NE and Guma M: Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol. 18:258–275. 2022.PubMed/NCBI View Article : Google Scholar | |
Allen KD, Thoma LM and Golightly YM: Epidemiology of osteoarthritis. Osteoarthritis Cartilage. 30:184–195. 2022.PubMed/NCBI View Article : Google Scholar | |
Vina ER and Kwoh CK: Epidemiology of osteoarthritis: Literature update. Curr Opin Rheumatol. 30:160–167. 2018.PubMed/NCBI View Article : Google Scholar | |
Nedunchezhiyan U, Varughese I, Sun AR, Wu X, Crawford R and Prasadam I: Obesity, inflammation, and immune system in osteoarthritis. Front Immunol. 13(907750)2022.PubMed/NCBI View Article : Google Scholar | |
Wang T and He C: Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 44:38–50. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Cai D and Bai X: Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage. 28:555–561. 2020.PubMed/NCBI View Article : Google Scholar | |
Hugle T and Geurts J: What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology (Oxford). 56:1461–1471. 2017.PubMed/NCBI View Article : Google Scholar | |
Zeng N, Yan ZP, Chen XY and Ni GX: Infrapatellar fat pad and knee osteoarthritis. Aging Dis. 11:1317–1328. 2020.PubMed/NCBI View Article : Google Scholar | |
Li Z, Huang Z and Bai L: Cell interplay in osteoarthritis. Front Cell Dev Biol. 9(720477)2021.PubMed/NCBI View Article : Google Scholar | |
Wenham CY and Conaghan PG: The role of synovitis in osteoarthritis. Ther Adv Musculoskelet Dis. 2:349–359. 2010.PubMed/NCBI View Article : Google Scholar | |
Wu CL, Harasymowicz NS, Klimak MA, Collins KH and Guilak F: The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage. 28:544–554. 2020.PubMed/NCBI View Article : Google Scholar | |
Klein-Wieringa IR, de Lange-Brokaar BJ, Yusuf E, Andersen SN, Kwekkeboom JC, Kroon HM, van Osch GJ, Zuurmond AM, Stojanovic-Susulic V, Nelissen RG, et al: Inflammatory cells in patients with endstage knee osteoarthritis: A Comparison between the Synovium and the Infrapatellar Fat Pad. J Rheumatol. 43:771–778. 2016.PubMed/NCBI View Article : Google Scholar | |
Knab K, Chambers D and Kronke G: Synovial macrophage and fibroblast heterogeneity in joint homeostasis and inflammation. Front Med (Lausanne). 9(862161)2022.PubMed/NCBI View Article : Google Scholar | |
Scanzello CR and Goldring SR: The role of synovitis in osteoarthritis pathogenesis. Bone. 51:249–257. 2012.PubMed/NCBI View Article : Google Scholar | |
Hui AY, McCarty WJ, Masuda K, Firestein GS and Sah RL: A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip Rev Syst Biol Med. 4:15–37. 2012.PubMed/NCBI View Article : Google Scholar | |
Gleason B, Chisari E and Parvizi J: Osteoarthritis can also start in the gut: The gut-joint axis. Indian J Orthop. 56:1150–1155. 2022.PubMed/NCBI View Article : Google Scholar | |
Mathiessen A and Conaghan PG: Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Res Ther. 19(18)2017.PubMed/NCBI View Article : Google Scholar | |
Sellam J and Berenbaum F: The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 6:625–635. 2010.PubMed/NCBI View Article : Google Scholar | |
Mustonen AM and Nieminen P: Extracellular vesicles and their potential significance in the pathogenesis and treatment of osteoarthritis. Pharmaceuticals (Basel). 14(315)2021.PubMed/NCBI View Article : Google Scholar | |
Benito MJ, Veale DJ, FitzGerald O, van den Berg WB and Bresnihan B: Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 64:1263–1267. 2005.PubMed/NCBI View Article : Google Scholar | |
Zeng C, Li YS and Lei GH: Synovitis in knee osteoarthritis: A precursor or a concomitant feature? Ann Rheum Dis. 74(e58)2015.PubMed/NCBI View Article : Google Scholar | |
Burke CJ, Alizai H, Beltran LS and Regatte RR: MRI of synovitis and joint fluid. J Magn Reson Imaging. 49:1512–1527. 2019.PubMed/NCBI View Article : Google Scholar | |
Yoshimi R, Hama M, Takase K, Ihata A, Kishimoto D, Terauchi K, Watanabe R, Uehara T, Samukawa S, Ueda A, et al: Ultrasonography is a potent tool for the prediction of progressive joint destruction during clinical remission of rheumatoid arthritis. Mod Rheumatol. 23:456–465. 2013.PubMed/NCBI View Article : Google Scholar | |
Bondeson J, Blom AB, Wainwright S, Hughes C, Caterson B and van den Berg WB: The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum. 62:647–657. 2010.PubMed/NCBI View Article : Google Scholar | |
Sokolove J and Lepus CM: Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Ther Adv Musculoskelet Dis. 5:77–94. 2013.PubMed/NCBI View Article : Google Scholar | |
Mapp PI and Walsh DA: Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 8:390–398. 2012.PubMed/NCBI View Article : Google Scholar | |
Li W, Lin J, Wang Z, Ren S, Wu X, Yu F, Weng J and Zeng H: Bevacizumab tested for treatment of knee osteoarthritis via inhibition of synovial vascular hyperplasia in rabbits. J Orthop Translat. 19:38–46. 2019.PubMed/NCBI View Article : Google Scholar | |
Oehler S, Neureiter D, Meyer-Scholten C and Aigner T: Subtyping of osteoarthritic synoviopathy. Clin Exp Rheumatol. 20:633–640. 2002.PubMed/NCBI | |
Bhat S, Tripathi A and Kumar A: Supermacroprous chitosan-agarose-gelatin cryogels: In vitro characterization and in vivo assessment for cartilage tissue engineering. J R Soc Interface. 8:540–554. 2011.PubMed/NCBI View Article : Google Scholar | |
Amr M, Mallah A, Yasmeen S, Van Wie B, Gozen A, Mendenhall J and Abu-Lail NI: From chondrocytes to chondrons, maintenance of phenotype and matrix production in a composite 3D hydrogel scaffold. Gels. 8(90)2022.PubMed/NCBI View Article : Google Scholar | |
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8:315–317. 2006.PubMed/NCBI View Article : Google Scholar | |
Chan CM, Macdonald CD, Litherland GJ, Wilkinson DJ, Skelton A, Europe-Finner GN and Rowan AD: Cytokine-induced MMP13 expression in human chondrocytes is dependent on activating transcription factor 3 (ATF3) Regulation. J Biol Chem. 292:1625–1636. 2017.PubMed/NCBI View Article : Google Scholar | |
Sandell LJ and Aigner T: Articular cartilage and changes in arthritis. An introduction: Cell biology of osteoarthritis. Arthritis Res. 3:107–113. 2001.PubMed/NCBI View Article : Google Scholar | |
Otsuki S, Taniguchi N, Grogan SP, D'Lima D, Kinoshita M and Lotz M: Expression of novel extracellular sulfatases Sulf-1 and Sulf-2 in normal and osteoarthritic articular cartilage. Arthritis Res Ther. 10(R61)2008.PubMed/NCBI View Article : Google Scholar | |
Lian C, Wang X, Qiu X, Wu Z, Gao B, Liu L, Liang G, Zhou H, Yang X, Peng Y, et al: Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-SMAD1 interaction. Bone Res. 7(8)2019.PubMed/NCBI View Article : Google Scholar | |
Liu-Bryan R: Synovium and the innate inflammatory network in osteoarthritis progression. Curr Rheumatol Rep. 15(323)2013.PubMed/NCBI View Article : Google Scholar | |
Huh YH, Lee G, Song WH, Koh JT and Ryu JH: Crosstalk between FLS and chondrocytes is regulated by HIF-2α-mediated cytokines in arthritis. Exp Mol Med. 47(e197)2015.PubMed/NCBI View Article : Google Scholar | |
Ayral X, Pickering EH, Woodworth TG, Mackillop N and Dougados M: Synovitis: A potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis-results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage. 13:361–367. 2005.PubMed/NCBI View Article : Google Scholar | |
Roemer FW, Guermazi A, Felson DT, Niu J, Nevitt MC, Crema MD, Lynch JA, Lewis CE, Torner J and Zhang Y: Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: The MOST study. Ann Rheum Dis. 70:1804–1809. 2011.PubMed/NCBI View Article : Google Scholar | |
Wang M, Tan G, Jiang H, Liu A, Wu R, Li J, Sun Z, Lv Z, Sun W and Shi D: Molecular crosstalk between articular cartilage, meniscus, synovium, and subchondral bone in osteoarthritis. Bone Joint Res. 11:862–872. 2022.PubMed/NCBI View Article : Google Scholar | |
Lu Y, Liu L, Pan J, Luo B, Zeng H, Shao Y, Zhang H, Guan H, Guo D, Zeng C, et al: MFG-E8 regulated by miR-99b-5p protects against osteoarthritis by targeting chondrocyte senescence and macrophage reprogramming via the NF-κB pathway. Cell Death Dis. 12(533)2021.PubMed/NCBI View Article : Google Scholar | |
Li M, Yin H, Yan Z, Li H, Wu J, Wang Y, Wei F, Tian G, Ning C, Li H, et al: The immune microenvironment in cartilage injury and repair. Acta Biomater. 140:23–42. 2022.PubMed/NCBI View Article : Google Scholar | |
Li X, Liao Z, Deng Z, Chen N and Zhao L: Combining bulk and single-cell RNA-sequencing data to reveal gene expression pattern of chondrocytes in the osteoarthritic knee. Bioengineered. 12:997–1007. 2021.PubMed/NCBI View Article : Google Scholar | |
Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM and Sokolove J: Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 12:580–592. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhu X, Lee CW, Xu H, Wang YF, Yung PSH, Jiang Y and Lee OK: Phenotypic alteration of macrophages during osteoarthritis: A systematic review. Arthritis Res Ther. 23(110)2021.PubMed/NCBI View Article : Google Scholar | |
Woodell-May JE and Sommerfeld SD: Role of inflammation and the immune system in the progression of osteoarthritis. J Orthop Res. 38:253–257. 2020.PubMed/NCBI View Article : Google Scholar | |
Newton K and Dixit VM: Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 4(a006049)2012.PubMed/NCBI View Article : Google Scholar | |
Kawai T and Akira S: The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat Immunol. 11:373–384. 2010.PubMed/NCBI View Article : Google Scholar | |
Estrada McDermott J, Pezzanite L, Goodrich L, Santangelo K, Chow L, Dow S and Wheat W: Role of innate immunity in initiation and progression of osteoarthritis, with emphasis on horses. Animals (Basel). 11(3247)2021.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Zhao Y, Sun X, Xing Y, Wang X and Yang Q: Immunomodulation of MSCs and MSC-Derived extracellular vesicles in osteoarthritis. Front Bioeng Biotechnol. 8(575057)2020.PubMed/NCBI View Article : Google Scholar | |
Davies LC and Taylor PR: Tissue-resident macrophages: Then and now. Immunology. 144:541–548. 2015.PubMed/NCBI View Article : Google Scholar | |
Fernandes TL, Gomoll AH, Lattermann C, Hernandez AJ, Bueno DF and Amano MT: Macrophage: A potential target on cartilage regeneration. Front Immunol. 11(111)2020.PubMed/NCBI View Article : Google Scholar | |
Wang H, Zhang H, Fan K, Zhang D, Hu A, Zeng X, Liu YL, Tan G and Wang H: Frugoside delays osteoarthritis progression via inhibiting miR-155-modulated synovial macrophage M1 polarization. Rheumatology (Oxford). 60:4899–4909. 2021.PubMed/NCBI View Article : Google Scholar | |
Mahon OR, Kelly DJ, McCarthy GM and Dunne A: Osteoarthritis-associated basic calcium phosphate crystals alter immune cell metabolism and promote M1 macrophage polarization. Osteoarthritis Cartilage. 28:603–612. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen J, Chen S, Cai D, Wang Q and Qin J: The role of Sirt6 in osteoarthritis and its effect on macrophage polarization. Bioengineered. 13:9677–9689. 2022.PubMed/NCBI View Article : Google Scholar | |
Lee CH, Chiang CF, Kuo FC, Su SC, Huang CL, Liu JS, Lu CH, Hsieh CH, Wang CC, Lee CH and Shen PH: High-Molecular-Weight hyaluronic acid inhibits IL-1β-Induced synovial inflammation and macrophage polarization through the GRP78-NF-κB signaling pathway. Int J Mol Sci. 22(11917)2021.PubMed/NCBI View Article : Google Scholar | |
Zhen J, Chen X, Mao Y, Xie X, Chen X, Xu W and Zhang S: GLX351322, a Novel NADPH oxidase 4 inhibitor, attenuates TMJ osteoarthritis by inhibiting the ROS/MAPK/NF-κB signaling pathways. Oxid Med Cell Longev. 2023(1952348)2023.PubMed/NCBI View Article : Google Scholar | |
Zhou H, Shen X, Yan C, Xiong W, Ma Z, Tan Z, Wang J, Li Y, Liu J, Duan A and Liu F: Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage. Stem Cell Res Ther. 13(322)2022.PubMed/NCBI View Article : Google Scholar | |
Maglaviceanu A, Wu B and Kapoor M: Fibroblast-like synoviocytes: Role in synovial fibrosis associated with osteoarthritis. Wound Repair Regen. 29:642–649. 2021.PubMed/NCBI View Article : Google Scholar | |
Bao J, Yan W, Xu K, Chen M, Chen Z, Ran J, Xiong Y and Wu L: Oleanolic acid decreases IL-1β-Induced activation of fibroblast-like synoviocytes via the SIRT3-NF-κB axis in osteoarthritis. Oxid Med Cell Longev. 2020(7517219)2020.PubMed/NCBI View Article : Google Scholar | |
Tan F, Wang D and Yuan Z: The fibroblast-like synoviocyte derived exosomal long non-coding RNA H19 alleviates osteoarthritis progression through the miR-106b-5p/TIMP2 Axis. Inflammation. 43:1498–1509. 2020.PubMed/NCBI View Article : Google Scholar | |
Fernandes JC, Martel-Pelletier J and Pelletier JP: The role of cytokines in osteoarthritis pathophysiology. Biorheology. 39:237–246. 2002.PubMed/NCBI | |
Pap T, Dankbar B, Wehmeyer C, Korb-Pap A and Sherwood J: Synovial fibroblasts and articular tissue remodelling: Role and mechanisms. Semin Cell Dev Biol. 101:140–145. 2020.PubMed/NCBI View Article : Google Scholar | |
Mehana EE, Khafaga AF and El-Blehi SS: The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci. 234(116786)2019.PubMed/NCBI View Article : Google Scholar | |
Zheng Z, Xiang S, Wang Y, Dong Y, Li Z, Xiang Y, Bian Y, Feng B, Yang B and Weng X: NR4A1 promotes TNF-α-induced chondrocyte death and migration injury via activating the AMPK/Drp1/mitochondrial fission pathway. Int J Mol Med. 45:151–161. 2020.PubMed/NCBI View Article : Google Scholar | |
Smith MD: The normal synovium. Open Rheumatol J. 5:100–106. 2011.PubMed/NCBI View Article : Google Scholar | |
Silverstein AM, Stefani RM, Sobczak E, Tong EL, Attur MG, Shah RP, Bulinski JC, Ateshian GA and Hung CT: Toward understanding the role of cartilage particulates in synovial inflammation. Osteoarthritis Cartilage. 25:1353–1361. 2017.PubMed/NCBI View Article : Google Scholar | |
Estell EG, Silverstein AM, Stefani RM, Lee AJ, Murphy LA, Shah RP, Ateshian GA and Hung CT: Cartilage wear particles induce an inflammatory response similar to cytokines in human fibroblast-like synoviocytes. J Orthop Res. 37:1979–1987. 2019.PubMed/NCBI View Article : Google Scholar | |
Cao X, Wu S, Wang X, Huang J, Zhang W and Liang C: Receptor tyrosine kinase C-kit promotes a destructive phenotype of FLS in osteoarthritis via intracellular EMT signaling. Mol Med. 29(38)2023.PubMed/NCBI View Article : Google Scholar | |
Li Q, Wen Y, Wang L, Chen B, Chen J, Wang H and Chen L: Hyperglycemia-induced accumulation of advanced glycosylation end products in fibroblast-like synoviocytes promotes knee osteoarthritis. Exp Mol Med. 53:1735–1747. 2021.PubMed/NCBI View Article : Google Scholar | |
Damerau A, Kirchner M, Pfeiffenberger M, Ehlers L, Do Nguyen DH, Mertins P, Bartek B, Maleitzke T, Palmowski Y, Hardt S, et al: Metabolic reprogramming of synovial fibroblasts in osteoarthritis by inhibition of pathologically overexpressed pyruvate dehydrogenase kinases. Metab Eng. 72:116–132. 2022.PubMed/NCBI View Article : Google Scholar | |
Han D, Fang Y, Tan X, Jiang H, Gong X, Wang X, Hong W, Tu J and Wei W: The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis: An update. J Cell Mol Med. 24:9518–9532. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen X, Gong W, Shao X, Shi T, Zhang L, Dong J, Shi Y, Shen S, Qin J, Jiang Q and Guo B: METTL3-mediated m6A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression. Ann Rheum Dis. 81:87–99. 2022.PubMed/NCBI View Article : Google Scholar | |
Endisha H, Datta P, Sharma A, Nakamura S, Rossomacha E, Younan C, Ali SA, Tavallaee G, Lively S, Potla P, et al: MicroRNA-34a-5p promotes joint destruction during osteoarthritis. Arthritis Rheumatol. 73:426–439. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Lin CX, Song B, Li CC, Qiu JX, Li SX, Lin SP, Luo WQ, Fu Y, Fang GB, et al: Spermidine activates RIP1 deubiquitination to inhibit TNF-α-induced NF-κB/p65 signaling pathway in osteoarthritis. Cell Death Dis. 11(503)2020.PubMed/NCBI View Article : Google Scholar | |
Thomson A and Hilkens CMU: Synovial macrophages in osteoarthritis: The key to understanding pathogenesis? Front Immunol. 12(678757)2021.PubMed/NCBI View Article : Google Scholar | |
Zheng L, Zhang Z, Sheng P and Mobasheri A: The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev. 66(101249)2021.PubMed/NCBI View Article : Google Scholar | |
Duan L, Liang Y, Xu X, Xiao Y and Wang D: Recent progress on the role of miR-140 in cartilage matrix remodelling and its implications for osteoarthritis treatment. Arthritis Res Ther. 22(194)2020.PubMed/NCBI View Article : Google Scholar | |
Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M and de Seny D: Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol. 165:49–65. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Vasheghani F, Li YH, Blati M, Simeone K, Fahmi H, Lussier B, Roughley P, Lagares D, Pelletier JP, et al: Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann Rheum Dis. 74:1432–1440. 2015.PubMed/NCBI View Article : Google Scholar | |
Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou Y, Wen L, Li L, Xu Y, Wang Y and Tang F: Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis. 78:100–110. 2019.PubMed/NCBI View Article : Google Scholar | |
Hu X, Li Z, Ji M, Lin Y, Chen Y and Lu J: Identification of cellular heterogeneity and immunogenicity of chondrocytes via single-cell RNA sequencing technique in human osteoarthritis. Front Pharmacol. 13(1004766)2022.PubMed/NCBI View Article : Google Scholar | |
Gao H, Di J, Yin M, He T, Wu D, Chen Z, Li S, He L and Rong L: Identification of chondrocyte subpopulations in osteoarthritis using single-cell sequencing analysis. Gene. 852(147063)2023.PubMed/NCBI View Article : Google Scholar | |
Jiang Z, Liang G, Xiao Y, Qin T, Chen X, Wu E, Ma Q and Wang Z: Targeting the SLIT/ROBO pathway in tumor progression: Molecular mechanisms and therapeutic perspectives. Ther Adv Med Oncol. 11(1758835919855238)2019.PubMed/NCBI View Article : Google Scholar | |
Ludin A, Sela JJ, Schroeder A, Samuni Y, Nitzan DW and Amir G: Injection of vascular endothelial growth factor into knee joints induces osteoarthritis in mice. Osteoarthritis Cartilage. 21:491–497. 2013.PubMed/NCBI View Article : Google Scholar | |
Yuan C, Pan Z, Zhao K, Li J, Sheng Z, Yao X, Liu H, Zhang X, Yang Y, Yu D, et al: Classification of four distinct osteoarthritis subtypes with a knee joint tissue transcriptome atlas. Bone Res. 8(38)2020.PubMed/NCBI View Article : Google Scholar | |
Chou CH, Jain V, Gibson J, Attarian DE, Haraden CA, Yohn CB, Laberge RM, Gregory S and Kraus VB: Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci Rep. 10(10868)2020.PubMed/NCBI View Article : Google Scholar | |
Li Z, Wang Y, Xiao K, Xiang S, Li Z and Weng X: Emerging role of exosomes in the joint diseases. Cell Physiol Biochem. 47:2008–2017. 2018.PubMed/NCBI View Article : Google Scholar | |
Kolhe R, Hunter M, Liu S, Jadeja RN, Pundkar C, Mondal AK, Mendhe B, Drewry M, Rojiani MV, Liu Y, et al: Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Sci Rep. 7(2029)2017.PubMed/NCBI View Article : Google Scholar | |
Gordon S: Pattern recognition receptors: Doubling up for the innate immune response. Cell. 111:927–930. 2002.PubMed/NCBI View Article : Google Scholar | |
Nefla M, Holzinger D, Berenbaum F and Jacques C: The danger from within: Alarmins in arthritis. Nat Rev Rheumatol. 12:669–683. 2016.PubMed/NCBI View Article : Google Scholar | |
Knights AJ, Farrell EC, Ellis OM, Lammlin L, Junginger LM, Rzeczycki PM, Bergman RF, Pervez R, Cruz M, Knight E, et al: Synovial fibroblasts assume distinct functional identities and secrete R-spondin 2 in osteoarthritis. Ann Rheum Dis. 82:272–282. 2023.PubMed/NCBI View Article : Google Scholar | |
Takegami Y, Ohkawara B, Ito M, Masuda A, Nakashima H, Ishiguro N and Ohno K: R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification. Biochem Biophys Res Commun. 473:255–264. 2016.PubMed/NCBI View Article : Google Scholar | |
Sun Y, Zuo Z and Kuang Y: An emerging target in the battle against osteoarthritis: Macrophage polarization. Int J Mol Sci. 21(8513)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu J, Liu X, Shao Y, Zhao C, Pan J, et al: Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann Rheum Dis. 77:1524–1534. 2018.PubMed/NCBI View Article : Google Scholar | |
Carpintero-Fernandez P, Gago-Fuentes R, Wang HZ, Fonseca E, Caeiro JR, Valiunas V, Brink PR and Mayan MD: Intercellular communication via gap junction channels between chondrocytes and bone cells. Biochim Biophys Acta Biomembr. 1860:2499–2505. 2018.PubMed/NCBI View Article : Google Scholar | |
Limagne E, Lancon A, Delmas D, Cherkaoui-Malki M and Latruffe N: Resveratrol interferes with IL1-β-Induced pro-inflammatory paracrine interaction between primary chondrocytes and macrophages. Nutrients. 8(280)2016.PubMed/NCBI View Article : Google Scholar | |
Samavedi S, Diaz-Rodriguez P, Erndt-Marino JD and Hahn MS: A three-dimensional chondrocyte-macrophage coculture system to probe inflammation in experimental osteoarthritis. Tissue Eng Part A. 23:101–114. 2017.PubMed/NCBI View Article : Google Scholar | |
Hamasaki M, Terkawi MA, Onodera T, Homan K and Iwasaki N: A novel cartilage fragments stimulation model revealed that macrophage inflammatory response causes an upregulation of catabolic factors of chondrocytes in vitro. Cartilage. 12:354–361. 2021.PubMed/NCBI View Article : Google Scholar | |
Ni Z, Kuang L, Chen H, Xie Y, Zhang B, Ouyang J, Wu J, Zhou S, Chen L, Su N, et al: The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis. Cell Death Dis. 10(522)2019.PubMed/NCBI View Article : Google Scholar | |
Yin J, Zeng H, Fan K, Xie H, Shao Y, Lu Y, Zhu J, Yao Z, Liu L, Zhang H, et al: Pentraxin 3 regulated by miR-224-5p modulates macrophage reprogramming and exacerbates osteoarthritis associated synovitis by targeting CD32. Cell Death Dis. 13(567)2022.PubMed/NCBI View Article : Google Scholar | |
Chau M, Dou Z, Baroncelli M, Landman EB, Bendre A, Kanekiyo M, Gkourogianni A, Barnes K, Ottosson L and Nilsson O: The synovial microenvironment suppresses chondrocyte hypertrophy and promotes articular chondrocyte differentiation. NPJ Regen Med. 7(51)2022.PubMed/NCBI View Article : Google Scholar | |
Zhou Y, Ming J, Li Y, Li B, Deng M, Ma Y, Chen Z, Zhang Y, Li J and Liu S: Exosomes derived from miR-126-3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis. Cell Death Discov. 7(37)2021.PubMed/NCBI View Article : Google Scholar | |
Wang H, Shu J, Zhang C, Wang Y, Shi R, Yang F and Tang X: Extracellular Vesicle-Mediated miR-150-3p delivery in joint homeostasis: A potential treatment for osteoarthritis? Cells. 11(2766)2022.PubMed/NCBI View Article : Google Scholar | |
Peng S, Yan Y, Li R, Dai H and Xu J: Extracellular vesicles from M1-polarized macrophages promote inflammation in the temporomandibular joint via miR-1246 activation of the Wnt/β-catenin pathway. Ann N Y Acad Sci. 1503:48–59. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Cheng F, Rong G, Tang Z and Gui B: Circular RNA hsa_circ_0005567 overexpression promotes M2 type macrophage polarization through miR-492/SOCS2 axis to inhibit osteoarthritis progression. Bioengineered. 12:8920–8930. 2021.PubMed/NCBI View Article : Google Scholar | |
Varela-Eirin M, Carpintero-Fernandez P, Guitian-Caamano A, Varela-Vazquez A, Garcia-Yuste A, Sanchez-Temprano A, Bravo-Lopez SB, Yanez-Cabanas J, Fonseca E, Largo R, et al: Extracellular vesicles enriched in connexin 43 promote a senescent phenotype in bone and synovial cells contributing to osteoarthritis progression. Cell Death Dis. 13(681)2022.PubMed/NCBI View Article : Google Scholar | |
Baboolal TG, Mastbergen SC, Jones E, Calder SJ, Lafeber FP and McGonagle D: Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction. Ann Rheum Dis. 75:908–915. 2016.PubMed/NCBI View Article : Google Scholar | |
Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z and Goodman SB: Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 196:80–89. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang Z, Schmitt JF and Lee EH: Immunohistochemical analysis of human mesenchymal stem cells differentiating into chondrogenic, osteogenic, and adipogenic lineages. Methods Mol Biol. 698:353–366. 2011.PubMed/NCBI View Article : Google Scholar | |
Chang YH, Wu KC, Harn HJ, Lin SZ and Ding DC: Exosomes and stem cells in degenerative disease diagnosis and therapy. Cell Transplant. 27:349–363. 2018.PubMed/NCBI View Article : Google Scholar | |
Maumus M, Pers YM, Ruiz M, Jorgensen C and Noel D: Mesenchymal stem cells and regenerative medicine: Future perspectives in osteoarthritis. Med Sci (Paris). 34:1092–1099. 2018.PubMed/NCBI View Article : Google Scholar : (In French). | |
Matas J, Orrego M, Amenabar D, Infante C, Tapia-Limonchi R, Cadiz MI, Alcayaga-Miranda F, Gonzalez PL, Muse E, Khoury M, et al: Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: Repeated MSC Dosing Is Superior to a Single MSC dose and to hyaluronic acid in a controlled randomized phase I/II Trial. Stem Cells Transl Med. 8:215–224. 2019.PubMed/NCBI View Article : Google Scholar | |
Soler R, Orozco L, Munar A, Huguet M, Lopez R, Vives J, Coll R, Codinach M and Garcia-Lopez J: Final results of a phase I-II trial using ex vivo expanded autologous Mesenchymal Stromal Cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee. 23:647–654. 2016.PubMed/NCBI View Article : Google Scholar | |
Ferraris VA: How do cells talk to each other?: Paracrine factors secreted by mesenchymal stromal cells. J Thorac Cardiovasc Surg. 151:849–851. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Rong Y, Luo C and Cui W: Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization. Aging (Albany NY). 12:25138–25152. 2020.PubMed/NCBI View Article : Google Scholar | |
Lee Y, Park YS, Choi NY, Kim YI and Koh YG: Proteomic analysis reveals commonly secreted proteins of mesenchymal stem cells derived from bone marrow, adipose tissue, and synovial membrane to show potential for cartilage regeneration in knee osteoarthritis. Stem Cells Int. 2021(6694299)2021.PubMed/NCBI View Article : Google Scholar | |
Peng J, Mao Z, Liu Y, Tian Y, Leng Q, Gu J and Tan R: 12-Epi-Napelline regulated TGF-β/BMP signaling pathway mediated by BMSCs paracrine acceleration against osteoarthritis. Int Immunopharmacol. 113(Pt A)(109307)2022.PubMed/NCBI View Article : Google Scholar | |
Kuroda K, Kabata T, Hayashi K, Maeda T, Kajino Y, Iwai S, Fujita K, Hasegawa K, Inoue D, Sugimoto N and Tsuchiya H: The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression. BMC Musculoskelet Disord. 16(236)2015.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Ge Y, Zhou L, Li T, Yan B, Chen J, Huang J, Du W, Lv S, Tong P and Shan L: Pain relief and cartilage repair by Nanofat against osteoarthritis: Preclinical and clinical evidence. Stem Cell Res Ther. 12(477)2021.PubMed/NCBI View Article : Google Scholar | |
Lee M, Kim GH, Kim M, Seo JM, Kim YM, Seon MR, Um S, Choi SJ, Oh W, Song BR and Jin HJ: PTX-3 secreted by intra-articular-injected SMUP-Cells reduces pain in an osteoarthritis rat model. Cells. 10(2420)2021.PubMed/NCBI View Article : Google Scholar | |
Fan M, Zhang J, Zhou L, Chen Z, Bao R, Zheng L, Tong P, Ma Y and Shan L: Intra-articular injection of placental mesenchymal stromal cells ameliorates pain and cartilage anabolism/catabolism in knee osteoarthritis. Front Pharmacol. 13(983850)2022.PubMed/NCBI View Article : Google Scholar | |
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, Ouyang J, He M, Du X and Chen L: Exosomes: Roles and therapeutic potential in osteoarthritis. Bone Res. 8(25)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang S and Jin Z: Bone mesenchymal stem cell-derived extracellular vesicles containing long noncoding RNA NEAT1 relieve osteoarthritis. Oxid Med Cell Longev. 2022(5517648)2022.PubMed/NCBI View Article : Google Scholar | |
Wen C, Lin L, Zou R, Lin F and Liu Y: Mesenchymal stem cell-derived exosome mediated long non-coding RNA KLF3-AS1 represses autophagy and apoptosis of chondrocytes in osteoarthritis. Cell Cycle. 21:289–303. 2022.PubMed/NCBI View Article : Google Scholar | |
Bao C and He C: The role and therapeutic potential of MSC-derived exosomes in osteoarthritis. Arch Biochem Biophys. 710(109002)2021.PubMed/NCBI View Article : Google Scholar | |
Wang K, Li F, Yuan Y, Shan L, Cui Y, Qu J and Lian F: Synovial mesenchymal stem cell-derived EV-Packaged miR-31 downregulates histone demethylase KDM2A to prevent knee osteoarthritis. Mol Ther Nucleic Acids. 22:1078–1091. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Yan K, Ge G, Zhang D, Bai J, Guo X, Zhou J, Xu T, Xu M, Long X, et al: Exosomes derived from miR-155-5p-overexpressing synovial mesenchymal stem cells prevent osteoarthritis via enhancing proliferation and migration, attenuating apoptosis, and modulating extracellular matrix secretion in chondrocytes. Cell Biol Toxicol. 37:85–96. 2021.PubMed/NCBI View Article : Google Scholar | |
Lu L, Wang J, Fan A, Wang P, Chen R, Lu L and Yin F: Synovial mesenchymal stem cell-derived extracellular vesicles containing microRN555A-26a-5p ameliorate cartilage damage of osteoarthritis. J Gene Med. 23(e3379)2021.PubMed/NCBI View Article : Google Scholar | |
Zeng Z, Dai Y, Deng S, Zou S, Dou T and Wei F: Synovial mesenchymal stem cell-derived extracellular vesicles alleviate chondrocyte damage during osteoarthritis through microRNA-130b-3p-mediated inhibition of the LRP12/AKT/β-catenin axis. Immunopharmacol Immunotoxicol. 44:247–260. 2022.PubMed/NCBI View Article : Google Scholar | |
Shao LT, Luo L, Qiu JH and Deng DYB: PTH (1-34) enhances the therapeutic effect of bone marrow mesenchymal stem cell-derived exosomes by inhibiting proinflammatory cytokines expression on OA chondrocyte repair in vitro. Arthritis Res Ther. 24(96)2022.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Lin L, Zou R, Wen C, Wang Z and Lin F: MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle. 17:2411–2422. 2018.PubMed/NCBI View Article : Google Scholar | |
Ragni E, Colombini A, Vigano M, Libonati F, Perucca Orfei C, Zagra L and de Girolamo L: Cartilage protective and immunomodulatory features of osteoarthritis synovial fluid-treated adipose-derived mesenchymal stem cells secreted factors and extracellular vesicles-embedded miRNAs. Cells. 10(1072)2021.PubMed/NCBI View Article : Google Scholar | |
Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, Liao W and Kang Y: Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther. 9(247)2018.PubMed/NCBI View Article : Google Scholar |