1
|
Cabasag CJ, Fagan PJ, Ferlay J, Vignat J,
Laversanne M, Liu L, van der Aa MA, Bray F and Soerjomataram I:
Ovarian cancer today and tomorrow: A global assessment by world
region and Human Development Index using GLOBOCAN 2020. Int J
Cancer. 151:1535–1541. 2022.PubMed/NCBI View Article : Google Scholar
|
2
|
Richardson DL, Eskander RN and O'Malley
DM: Advances in ovarian cancer care and unmet treatment needs for
patients with platinum resistance: A narrative review. JAMA Oncol.
9:851–859. 2023.PubMed/NCBI View Article : Google Scholar
|
3
|
Banerjee S, Drapkin R, Richardson DL and
Birrer M: Targeting NaPi2b in ovarian cancer. Cancer Treat Rev.
112(102489)2023.PubMed/NCBI View Article : Google Scholar
|
4
|
Guo L, Wang J, Li N, Cui J and Su Y:
Peptides for diagnosis and treatment of ovarian cancer. Front
Oncol. 13(1135523)2023.PubMed/NCBI View Article : Google Scholar
|
5
|
Zhang R, Siu MKY, Ngam HYS and Chan KKL:
Molecular biomarkers for the early detection of ovarian cancer. Int
J Mol Sci. 23(120941)2022.PubMed/NCBI View Article : Google Scholar
|
6
|
Yu X and Ye F: Role of angiopoietins in
development of cancer and neoplasia associated with viral
infection. Cells. 9(457)2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Volk A, Legler K, Hamester F, Kuerti S,
Eylmann K, Rossberg M, Schmalfeldt B and Oliveira-Ferrer L: Ang-2
is a potential molecular marker for lymphatic metastasis and better
response to bevacizumab therapy in ovarian cancer. J Cancer Res
Clin Oncol. 149:15957–15967. 2023.PubMed/NCBI View Article : Google Scholar
|
8
|
Nurgaliewa AK, Popov VE, Skripova VS,
Bulatova LF, Savenkova DV, Vlasenkova RA, Safina SZ, Shakirova EZ,
Filonenko VV, Bogdanov MV and Kiyamova RG: Sodium-dependent
phosphate transporter NaPi2b as a potential predictive marker for
targeted therapy of ovarian cancer. Biochem Biophys Rep.
28(101104)2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Benerjee S, Oza AM, Birrer MJ, Hamilton
EP, Hasan J, Leary A, Moore KN, Mackowiak-Matejczyk B, Pikiel J,
Ray-Coquard I, et al: Anti-NaPi2b antibody-drug conjugate
lifastuzumab vedotin (DNIB0600A) compared with pegylated liposomal
doxorubicin in patients with platinum-resistant ovarian cancer in a
randomized, open-label, phase II study. Ann Oncol. 29:917–923.
2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Moore KN, Birrer MJ, Marsters J, Wang Y,
Choi Y, Royer-Joo S, Lemahieu V, Armstrong K, Cordova J, Samineni
D, et al: Phase 1b study of anti-NaPi2b antibody-drug conjugate
lifastuzumab vedotin (DNIB0600A) in patients with
platinum-sensitive recurrent ovarian cancer. Gynecol Oncol.
158:631–639. 2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Cogan D and Bakhoum SF: Re-awakening
innate immune signaling in cancer: The development of highly potent
ENPP1 inhibitors. Cell Chem Biol. 27:1327–1328. 2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Wang H, Ye F, Zhou C, Cheng Q and Chen H:
High expression of ENPP1 in high-grade serous ovarian carcinoma
predicts poor prognosis and as a molecular therapy target. PLoS
One. 16(e0245733)2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Ruiz-Fernández de Córdoba B,
Martínez-Monge R and Lecanda F: ENPP1 immunobiology as a
therapeutic target. Clin Cancer Res. 29:2184–2193. 2023.PubMed/NCBI View Article : Google Scholar
|
14
|
Kaszak I, Witkowska-Piłaszewicz O,
Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F and Jurka P: Role
of cadherins in cancer-a review. Int J Mol Sci.
21(7624)2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Communal L, Roy N, Cahuzac M, Rahimi K,
Köbel M, Provencher DM and Mes-Masson AM: A Keratin 7 and
E-Cadherin signature is highly predictive of tubo-ovarian
high-grade serous carcinoma prognosis. Int J Mol Sci.
22(5325)2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Rosso M, Majem B, Devis L, Lapyckyj L,
Besso MJ, Llauradó M, Abascal MF, Matos ML, Lanau L, Castellví J,
et al: E-cadherin: A determinant molecule associated with ovarian
cancer progression, dissemination and aggressiveness. PLoS One.
12(e0184439)2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Wróblewski M, Szewczyk-Golec K,
Hołyńska-Iwan I, Wróblewska J and Woźniak A: Characteristics of
selected adipokines in ascites and blood of ovarian cancer
patients. Cancers (Basel). 13(4702)2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Sonego M, Poletto E, Pivetta E, Nicoloso
MS, Pellicani R, Vinciguerra GLR, Citron F, Sorio R, Mongiat M and
Baldassarre G: IMP-1 is overexpressed and secreted by platinum
resistant epithelial ovarian cancer cells. Cells.
9(6)2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Abreu M, Cabezas-Sainz P, Alonso-Alconada
L, Ferreirós A, Mondelo-Macía P, Lago-Lestón RM, Abalo A, Díaz E,
Palacios-Zambrano S, Rojo-Sebastian A, et al: Circulating tumor
cells characterization revealed TIMP1 as a potential therapeutic
target in ovarian cancer. Cells. 9(1218)2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Vilà-González M, Kelaini S, Magee C,
Caines R, Campbell D, Eleftheriadou M, Cochrane A, Drehmer D,
Tsifaki M, O'Neill K, et al: Enhanced function of induced
pluripotent stem cell-derived endothelial cells through ESM1
signaling. Stem Cells. 37:226–239. 2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Li YK, Zeng T, Guan Y, Liu J, Liao NC,
Wang MJ, Chen KX, Luo XY, Chen CY, Quan FF, et al: Validation of
ESM1 related to ovarian cancer and the biological function and
prognostic significance. Int J Biol Sci. 19:258–280.
2023.PubMed/NCBI View Article : Google Scholar
|
22
|
Ma H, Tian T and Cui Z: Targeting ovarian
cancer stem cells: A new way out. Stem Cell Res Ther.
14(28)2023.PubMed/NCBI View Article : Google Scholar
|
23
|
García-Rubiño MF, Lozano-López C and
Campos JM: Inhibitors of cancer stem cells. Anticancer Agents Med
Chem. 16:12301–1239. 2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Wilczyński JR, Wilczyński M and Paradowska
E: Cancer stem cells in ovarian cancer-a source of tumor success
and a challenging target for novel therapies. Int J Mol Sci.
23(2496)2022.PubMed/NCBI View Article : Google Scholar
|
25
|
Keyvani V, Farshchian M, Esmaeili SA, Yari
H, Moghbeli M, Nezhad SK and Abbaszadegan MR: Ovarian cancer stem
cells and targeted therapy. J Ovarian Res. 12(120)2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Muñoz-Galván S and Carnero A: Targeting
cancer stem cells to overcome therapy resistance in ovarian cancer.
Cells. 9(1402)2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Markowska A, Sajdak S, Huczyński A, Rehlis
S and Markowska J: Ovarian cancer stem cells: A target for
oncological therapy. Adv Clin Exp Med. 27:1017–1020.
2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Bapat SA, Mali AM, Koppikar CB and Kurrey
NK: Stem and progenitor-like cells contribute to the aggressive
behavior of human epithelial ovarian cancer. Cancer Res.
65:3025–3029. 2005.PubMed/NCBI View Article : Google Scholar
|
29
|
Wen KC, Sung PL, Wu ATH, Chou PC, Lin JH,
Huang CF, Yeung SJ and Lee MH: Neoadjuvant metformin added to
conventional chemotherapy synergizes anti-proliferative effects in
ovarian cancer. J Ovarian Res. 13(95)2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Broekman KE, Hof MAJ, Touw DJ, Gietema JA,
Nijman HW, Lefrandt JD, Reyners AKL and Jalving M: Phase I study of
metformin in combination with carboplatin/paclitaxel chemotherapy
in patients with advanced epithelial ovarian cancer. Invest New
Drugs. 38:1454–1462. 2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhang R, Zhang P, Wang H, Hou D, Li W,
Xiao G and Li C: Inhibitory effects of metformin at low
concentration on epithelial-mesenchymal transition of CD44(+)
CD117(+) ovarian cancer stem cells. Stem Cell Res Ther.
6(262)2015.PubMed/NCBI View Article : Google Scholar
|
32
|
Chung H, Kim YH, Kwon M, Shin SJ, Kwon SH,
Cha SD and Cho CH: The effect of salinomycin on ovarian cancer
stem-like cells. Obstet Gynecol Sci. 59:261–268. 2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Lee HG, Shin SJ, Chung HW, Kwon SH, Cha
SD, Lee JE and Cho CH: Salinomycin reduces stemness and induces
apoptosis on human ovarian cancer stem cell. J Gynecol Oncol.
28(e14)2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Zou M, Yin X, Zhou X, Niu X, Wang Y and Su
M: Salinomycin-Loaded high-density lipoprotein exerts promising
anti-ovarian cancer effects by inhibiting epithelial-mesenchymal
transition. Int J Nanomedicine. 17:4059–4071. 2022.PubMed/NCBI View Article : Google Scholar
|
35
|
Roy M, Connor J, Al-Niaimi A, Rose SL and
Mahajan A: Aldehyde dehydrogenase 1A1 (ALDH1A1) expression by
immunohistochemistry is associated with chemo-refractoriness in
patients with high-grade ovarian serous carcinoma. Hum Pathol.
73:1–6. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Januchowski R, Wojtowicz K, Sterzyńska K,
Sosiſska P, Andrzejewska M, Zawierucha P, Nowicki M and Zabel M:
Inhibition of ALDH1A1 activity decreases expression of drug
transporters and reduces chemotherapy resistance in ovarian cancer
cell lines. Int J Biochem Cell Biol. 78:248–259. 2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Kim D, Choi BH, Ryoo IG and Kwak MK: High
NRF2 level mediates cancer stem cell-like properties of aldehyde
dehydrogenase (ALDH)-high ovarian cancer cells: Inhibitory role of
all-trans retinoic acid in ALDH/NRF2 signaling. Cell Death
Dis. 9(896)2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Kaipio K, Chen P, Roering P, Huhtinen K,
Mikkonen P, Östling P, Lehtinen L, Mansuri N, Korpela T, Potdar S,
et al: ALDH1A1-related stemness in high-grade serous ovarian cancer
is a negative prognostic indicator but potentially targetable by
EGFR/mTOR-PI3K/aurora kinase inhibitors. J Pathol. 250:159–169.
2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Kenda Suster N, Virant-Klun I, Frkovic
Grazio S and Smrkolj S: The significance of the pluripotency and
cancer stem cell-related marker NANOG in diagnosis and treatment of
ovarian carcinoma. Eur J Gynaecol Oncol. 37:604–612.
2016.PubMed/NCBI
|
40
|
Mahalaxmi J, Devi SM, Kaavya J, Arul N,
Balachandar V and Santhy KS: New insight into NANOG: A novel
therapeutic target for ovarian cancer (OC). Eur J Pharmacol.
852:51–57. 2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Vasefifar P, Motafakkerazad R, Maleki LA,
Najafi S, Ghrobaninezhad F, Najafzadeh B, Alemohammad H, Amini M,
Baghbanzadeh A and Baradaran B: Nanog, as a key cancer stem cell
marker in tumor progression. Gene. 827(146448)2022.PubMed/NCBI View Article : Google Scholar
|
42
|
Alemohammad H, Asadzadeh Z, Motafakker
Azad R, Hemmat N, Najafzadeh B, Vasefifar P, Najafi S and Baradaran
B: Signaling pathways and microRNAs, the orchestrators of NANOG
activity during cancer induction. Life Sci.
260(118337)2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Xu CX, Xu M, Tran L, Yang H, Permuth-Wey
J, Kruk PA, Wenham RM, Nicosia SV, Lancaster JM, Sellers TA and
Cheng JQ: MicroRNA MiR-214 regulates ovarian cancer cell stemness
by targeting p53/Nanog. J Biol Chem. 291(22851)2016.PubMed/NCBI View Article : Google Scholar
|
44
|
Wu D, Wang J, Cai Y, Ren M, Zhang Y, Shi
F, Zhao F, He X, Pan M, Yan C and Dou J: Effect of targeted ovarian
cancer immunotherapy using ovarian cancer stem cell vaccine. J
Ovarian Res. 8(68)2015.PubMed/NCBI View Article : Google Scholar
|
45
|
Wu D, Yu X, Wang J, Hui X, Zhang Y, Cai Y,
Ren M, Guo M, Zhao F and Dou J: Ovarian cancer stem cells with high
ROR1 expression serve as a new prophylactic vaccine for ovarian
cancer. J Immunol Res. 2019(9394615)2019.PubMed/NCBI View Article : Google Scholar
|
46
|
Hu H, Zhao F, Wu D, Zhang Y, Bao X, Shi F,
Cai Y and Dou J: Eliciting effective tumor immunity against ovarian
cancer by cancer stem cell vaccination. Biomed Pharmacother.
161(114547)2023.PubMed/NCBI View Article : Google Scholar
|
47
|
Mao Y, Chen Y and Zhang Z: Molecular
function of Krüppel-like factor 7 in biology. Acta Biochim Biophys
Sin (Shanghai). 55:713–725. 2023.PubMed/NCBI View Article : Google Scholar
|
48
|
De Donato M, Babini G, Mozzetti S,
Buttarelli M, Ciucci A, Arduini G, De Rosa MC, Scambia G and Gallo
D: KLF7: A new candidate biomarker and therapeutic target for
high-grade serous ovarian cancer. J Exp Clin Cancer Res.
39(265)2020.PubMed/NCBI View Article : Google Scholar
|