1
|
Gouveia EB, Elmann D and Morales MS:
Ankylosing spondylitis and uveitis: overview. Rev Bras Reumatol.
52:742–756. 2012.PubMed/NCBI
|
2
|
Zhu W, He X, Cheng K, Zhang L, Chen D,
Wang X, Qiu G, Cao X and Weng X: Ankylosing spondylitis: Etiology,
pathogenesis, and treatments. Bone Res. 7(22)2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Sieper J and Poddubnyy D: Axial
spondyloarthritis. Lancet. 390:73–84. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Carron P, De Craemer AS and Van den Bosch
F: Peripheral spondyloarthritis: A neglected entity-state of the
art. RMD Open. 6(e001136)2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Navarro-Compan V, Sepriano A, El-Zorkany B
and van der Heijde D: Axial spondyloarthritis. Ann Rheum Dis.
80:1511–1521. 2021.PubMed/NCBI View Article : Google Scholar
|
6
|
de Winter JJ, van Mens LJ, van der Heijde
D, Landewe R and Baeten DL: Prevalence of peripheral and
extra-articular disease in ankylosing spondylitis versus
non-radiographic axial spondyloarthritis: A meta-analysis.
Arthritis Res Ther. 18(196)2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Maruyama R and Suzuki H: Long noncoding
RNA involvement in cancer. BMB Rep. 45:604–611. 2012.PubMed/NCBI View Article : Google Scholar
|
8
|
Mercer TR, Dinger ME and Mattick JS: Long
non-coding RNAs: Insights into functions. Nat Rev Genet.
10:155–159. 2009.PubMed/NCBI View
Article : Google Scholar
|
9
|
Engreitz JM, Ollikainen N and Guttman M:
Long non-coding RNAs: Spatial amplifiers that control nuclear
structure and gene expression. Nat Rev Mol Cell Biol. 17:756–770.
2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Kundu M and Basu J: The role of microRNAs
and long non-coding RNAs in the regulation of the immune response
to mycobacterium tuberculosis infection. Front Immunol.
12(687962)2021.PubMed/NCBI View Article : Google Scholar
|
11
|
Shi G, Cheng Y, Zhang Y, Guo R, Li S and
Hong X: Long non-coding RNA LINC00511/miR-150/MMP13 axis promotes
breast cancer proliferation, migration and invasion. Biochim
Biophys Acta Mol Basis Dis. 1867(165957)2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Wang X, Li M, Wang Z, Han S, Tang X, Ge Y,
Zhou L, Zhou C, Yuan Q and Yang M: Silencing of long noncoding RNA
MALAT1 by miR-101 and miR-217 inhibits proliferation, migration,
and invasion of esophageal squamous cell carcinoma cells. J Biol
Chem. 290:3925–3935. 2015.PubMed/NCBI View Article : Google Scholar
|
13
|
Sun J, Wang R, Chao T and Wang C: Long
noncoding RNAs involved in cardiomyocyte apoptosis triggered by
different stressors. J Cardiovasc Transl Res. 15:588–603.
2022.PubMed/NCBI View Article : Google Scholar
|
14
|
Li C, Qu W and Yang X: Comprehensive
lncRNA and mRNA profiles in peripheral blood mononuclear cells
derived from ankylosing spondylitis patients by RNA-sequencing
analysis. Medicine (Baltimore). 101(e27477)2022.PubMed/NCBI View Article : Google Scholar
|
15
|
Wang JX, Zhao X and Xu SQ: Screening key
lncRNAs of ankylosing spondylitis using bioinformatics analysis. J
Inflamm Res. 15:6087–6096. 2022.PubMed/NCBI View Article : Google Scholar
|
16
|
Pimentel-Santos FM, Ligeiro D, Matos M,
Mourão AF, Costa J, Santos H, Barcelos A, Godinho F, Pinto P, Cruz
M, et al: Whole blood transcriptional profiling in ankylosing
spondylitis identifies novel candidate genes that might contribute
to the inflammatory and tissue-destructive disease aspects.
Arthritis Res Ther. 13(R57)2011.PubMed/NCBI View
Article : Google Scholar
|
17
|
Gracey E, Yao Y, Green B, Qaiyum Z,
Baglaenko Y, Lin A, Anton A, Ayearst R, Yip P and Inman RD: Sexual
dimorphism in the Th17 signature of ankylosing spondylitis.
Arthritis Rheumatol. 68:679–689. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012.PubMed/NCBI View Article : Google Scholar
|
19
|
Yu G, Wang LG, Yan GR and He QY: DOSE: An
R/Bioconductor package for disease ontology semantic and enrichment
analysis. Bioinformatics. 31:608–609. 2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Szklarczyk D, Gable AL, Lyon D, Junge A,
Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork
P, et al: STRING v11: Protein-protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47(D1):D607–D13.
2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong
R and Shi J: Recent advances in the development of protein-protein
interactions modulators: Mechanisms and clinical trials. Signal
Transduct Target Ther. 5(213)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003.PubMed/NCBI View Article : Google Scholar
|
23
|
Warde-Farley D, Donaldson SL, Comes O,
Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT,
et al: The GeneMANIA prediction server: Biological network
integration for gene prioritization and predicting gene function.
Nucleic Acids Res. 38(Web Server issue):W214–W20. 2010.PubMed/NCBI View Article : Google Scholar
|
24
|
Bader GD and Hogue CW: An automated method
for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics. 4(2)2003.PubMed/NCBI View Article : Google Scholar
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
26
|
Chen J, Song Y, Li M, Zhang Y, Lin T, Sun
J, Wang D, Liu Y, Guo J and Yu W: Comprehensive analysis of ceRNA
networks reveals prognostic lncRNAs related to immune infiltration
in colorectal cancer. BMC Cancer. 21(255)2021.PubMed/NCBI View Article : Google Scholar
|
27
|
Conga DF, Bowler M, Tantalean M, Montes D,
Serra-Freire NM and Mayor P: Intestinal helminths in wild Peruvian
red uakari monkeys (Cacajao calvus ucayalii) in the northeastern
Peruvian Amazon. J Med Primatol. 43:130–133. 2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Abstract Supplement ACR Convergence 2022.
Arthritis Rheumatology 74, 2022.
|
29
|
Schmitz SU, Grote P and Herrmann BG:
Mechanisms of long noncoding RNA function in development and
disease. Cell Mol Life Sci. 73:2491–2509. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Orum H, Pamuk GE, Pamuk ON, Demir M and
Turgut B: Does anti-TNF therapy cause any change in platelet
activation in ankylosing spondylitis patients? A comparative study.
J Thromb Thrombolysis. 33:154–159. 2012.PubMed/NCBI View Article : Google Scholar
|
31
|
Pendl GG, Robert C, Steinert M, Thanos R,
Eytner R, Borges E, Wild MK, Lowe JB, Fuhlbrigge RC, Kupper TS, et
al: Immature mouse dendritic cells enter inflamed tissue, a process
that requires E- and P-selectin, but not P-selectin glycoprotein
ligand 1. Blood. 99:946–956. 2002.PubMed/NCBI View Article : Google Scholar
|
32
|
Wang F, Yan CG, Xiang HY, Xing T and Wang
NS: The significance of platelet activation in ankylosing
spondylitis. Clin Rheumatol. 27:767–769. 2008.PubMed/NCBI View Article : Google Scholar
|
33
|
Fang YY, Wan L, Dong WZ, Wen JT and Liu J:
Effect of triptolide in improving platelet activation in patients
with ankylosing spondylitis by regulating VEGFA,SDF-1,CXCR4
pathway. Zhongguo Zhong Yao Za Zhi. 44:3520–3525. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Dong ZM, Chapman SM, Brown AA, Frenette
PS, Hynes RO and Wagner DD: The combined role of P- and E-selectins
in atherosclerosis. J Clin Invest. 102:145–152. 1998.PubMed/NCBI View Article : Google Scholar
|
35
|
Huo Y, Schober A, Forlow SB, Smith DF,
Hyman MC, Jung S, Littman DR, Weber C and Ley K: Circulating
activated platelets exacerbate atherosclerosis in mice deficient in
apolipoprotein E. Nat Med. 9:61–67. 2003.PubMed/NCBI View
Article : Google Scholar
|
36
|
Han C, Robinson DW Jr, Hackett MV,
Paramore LC, Fraeman KH and Bala MV: Cardiovascular disease and
risk factors in patients with rheumatoid arthritis, psoriatic
arthritis, and ankylosing spondylitis. J Rheumatol. 33:2167–2172.
2006.PubMed/NCBI
|
37
|
Verma I, Krishan P and Syngle A:
Predictors of atherosclerosis in ankylosing spondylitis. Rheumatol
Ther. 2:173–182. 2015.PubMed/NCBI View Article : Google Scholar
|
38
|
Bloch S, Froc C, Pontiggia A and Yamamoto
K: Existence of working memory in teleosts: Establishment of the
delayed matching-to-sample task in adult zebrafish. Behav Brain
Res. 370(111924)2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Gil N and Ulitsky I: Regulation of gene
expression by cis-acting long non-coding RNAs. Nat Rev Genet.
21:102–117. 2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Wang F, Ying HQ, He BS, Pan YQ, Deng QW,
Sun HL, Chen J, Liu X and Wang SK: Upregulated lncRNA-UCA1
contributes to progression of hepatocellular carcinoma through
inhibition of miR-216b and activation of FGFR1/ERK signaling
pathway. Oncotarget. 6:7899–7917. 2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Bian EB, Wang YY, Yang Y, Wu BM, Xu T,
Meng XM, Huang C, Zhang L, Lv XW, Xiong ZG and Li J: Hotair
facilitates hepatic stellate cells activation and fibrogenesis in
the liver. Biochim Biophys Acta Mol Basis Dis. 1863:674–686.
2017.PubMed/NCBI View Article : Google Scholar
|
42
|
Sternburg EL and Karginov FV: Global
Approaches in studying RNA-binding protein interaction networks.
Trends Biochem Sci. 45:593–603. 2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Tichon A, Gil N, Lubelsky Y, Havkin
Solomon T, Lemze D, Itzkovitz S, Stern-Ginossar N and Ulitsky I: A
conserved abundant cytoplasmic long noncoding RNA modulates
repression by Pumilio proteins in human cells. Nat Commun.
7(12209)2016.PubMed/NCBI View Article : Google Scholar
|
44
|
Lubelsky Y and Ulitsky I: Sequences
enriched in Alu repeats drive nuclear localization of long RNAs in
human cells. Nature. 555:107–111. 2018.PubMed/NCBI View Article : Google Scholar
|
45
|
Sizemore GM, Pitarresi JR, Balakrishnan S
and Ostrowski MC: The ETS family of oncogenic transcription factors
in solid tumours. Nat Rev Cancer. 17:337–351. 2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Wang KP, Zhu JQ and Zhang TT: Research
progress in zygomatic implant technique. Zhonghua Kou Qiang Yi Xue
Za Zhi. 55:196–200. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
47
|
Goto S, Takahashi M, Yasutsune N, Inayama
S, Kato D, Fukuoka M, Kashiwaba SI and Murakami Y: Identification
of GA-binding protein transcription factor alpha subunit (GABPA) as
a novel bookmarking factor. Int J Mol Sci. 20(1093)2019.PubMed/NCBI View Article : Google Scholar
|
48
|
Fang Z, Zhang N, Yuan X, Xing X, Li X, Qin
X, Liu Z, Neo S, Liu C, Kong F, et al: GABPA-activated TGFBR2
transcription inhibits aggressiveness but is epigenetically erased
by oncometabolites in renal cell carcinoma. J Exp Clin Cancer Res.
41(173)2022.PubMed/NCBI View Article : Google Scholar
|
49
|
Ma X, Lin Q, Cui G, Zhao J, Wei X, Li R,
Mao H, Ma Y, Liu P and Pang Y: GABPA expression in endometrial
carcinoma: A prognostic marker. Dis Markers.
2021(5552614)2021.PubMed/NCBI View Article : Google Scholar
|
50
|
Yin B, Dong B, Guo X, Wang C and Huo H:
GABPA protects against gastric cancer deterioration via negatively
regulating GPX1. J Med Biochem. 41:355–362. 2022.PubMed/NCBI View Article : Google Scholar
|
51
|
Paulsson JO, Wang N, Gao J, Stenman A,
Zedenius J, Mu N, Lui WO, Larsson C and Juhlin CC: GABPA-dependent
down-regulation of DICER1 in follicular thyroid tumours. Endocr
Relat Cancer. 27:295–308. 2020.PubMed/NCBI View Article : Google Scholar
|
52
|
Guo X, Chen F, Gao F, Li L, Liu K, You L,
Hua C, Yang F, Liu W, Peng C, et al: CNSA: A data repository for
archiving omics data. Database (Oxford).
2020(baaa055)2020.PubMed/NCBI View Article : Google Scholar
|
53
|
Chen FZ, You LJ, Yang F, Wang LN, Guo XQ,
Gao F, Hua C, Tan C, Fang L, Shan RQ, et al: CNGBdb: China national
GeneBank database. Yi Chuan. 42:799–809. 2020.PubMed/NCBI View Article : Google Scholar
|