1
|
Fedarko NS: Osteoblast/osteoclast
development and function in osteogenesis imperfecta. Osteogenesis
Imperfecta. Academic Press, pp45-56, 2014.
|
2
|
Kim JM, Lin C, Stavre Z, Greenblatt MB and
Shim JH: Osteoblast-osteoclast communication and bone homeostasis.
Cells. 9(2073)2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Zhang J, Zhang X, Zhang L, Zhou F, van
Dinther M and Ten Dijke P: LRP8 mediates Wnt/β-catenin signaling
and controls osteoblast differentiation. J Bone Miner Res.
27:2065–2074. 2012.PubMed/NCBI View Article : Google Scholar
|
4
|
Day TF, Guo X, Garrett-Beal L and Yang Y:
Wnt/beta-catenin signaling in mesenchymal progenitors controls
osteoblast and chondrocyte differentiation during vertebrate
skeletogenesis. Dev Cell. 8:739–750. 2005.PubMed/NCBI View Article : Google Scholar
|
5
|
Yamaguchi A, Komori T and Suda T:
Regulation of osteoblast differentiation mediated by bone
morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev.
21:393–411. 2000.PubMed/NCBI View Article : Google Scholar
|
6
|
Skillington J, Choy L and Derynck R: Bone
morphogenetic protein and retinoic acid signaling cooperate to
induce osteoblast differentiation of preadipocytes. J Cell Biol.
159:135–146. 2002.PubMed/NCBI View Article : Google Scholar
|
7
|
Gaur T, Lengner CJ, Hovhannisyan H, Bhat
RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS
and Lian JB: Canonical WNT signaling promotes osteogenesis by
directly stimulating Runx2 gene expression. J Biol Chem.
280:33132–33140. 2005.PubMed/NCBI View Article : Google Scholar
|
8
|
Yang W, Li HY, Wu YF, Mi RJ, Liu WZ, Shen
X, Lu YX, Jiang YH, Ma MJ and Shen HY: ac4C acetylation of RUNX2
catalyzed by NAT10 spurs osteogenesis of BMSCs and prevents
ovariectomy-induced bone loss. Mol Ther Nucleic Acids. 26:135–147.
2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Zhang B, Zhang X, Xiao J, Zhou X, Chen Y
and Gao C: Neuropeptide Y upregulates Runx2 and osterix and
enhances osteogenesis in mouse MC3T3-E1 cells via an autocrine
mechanism. Mol Med Rep. 22:4376–4382. 2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Lee KM, Park KH, Hwang JS, Lee M, Yoon DS,
Ryu HA, Jung HS, Park KW, Kim J, Park SW, et al: Inhibition of
STAT5A promotes osteogenesis by DLX5 regulation. Cell Death Dis.
9(1136)2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Li D, Zhang R, Zhu W, Xue Y, Zhang Y,
Huang Q, Liu M and Liu Y: S100A16 inhibits osteogenesis but
stimulates adipogenesis. Mol Biol Rep. 40:3465–3473.
2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Sturchler E, Cox JA, Durussel I, Weibel M
and Heizmann CW: S100A16, a novel calcium-binding protein of the
EF-hand superfamily. J Biol Chem. 281:38905–38917. 2006.PubMed/NCBI View Article : Google Scholar
|
13
|
Liu DD, Zhang JC, Zhang Q, Wang SX and
Yang MS: TGF-β/BMP signaling pathway is involved in cerium-promoted
osteogenic differentiation of mesenchymal stem cells. J Cell
Biochem. 114:1105–1114. 2013.PubMed/NCBI View Article : Google Scholar
|
14
|
Zhang LT, Liu RM, Luo Y, Zhao YJ, Chen DX,
Yu CY and Xiao JH: Hyaluronic acid promotes osteogenic
differentiation of human amniotic mesenchymal stem cells via the
TGF-β/Smad signalling pathway. Life Sci. 232(116669)2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhao M, Mishra L and Deng CX: The role of
TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 14:111–123.
2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Cai H, Yang X, Jiang Z, Liang B, Cai Q and
Huang H: Upregulation of SMAD4 inhibits thyroid cancer cell growth
via MAPK/JNK pathway repression. Trop J Pharm Res. 18:2473–2478.
2019.
|
17
|
Wang P, Wang Y, Tang W, Wang X, Pang Y,
Yang S, Wei Y, Gao H, Wang D and Cao Z: Bone morphogenetic
protein-9 enhances osteogenic differentiation of human periodontal
ligament stem cells via the JNK pathway. PLoS One.
12(e0169123)2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Zhu WQ, Ming PP, Zhang SM and Qiu J: Role
of MAPK/JNK signaling pathway on the regulation of biological
behaviors of MC3T3-E1 osteoblasts under titanium ion exposure. Mol
Med Rep. 22:4792–4800. 2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Lei Z, Xiaoying Z and Xingguo L:
Ovariectomy-associated changes in bone mineral density and bone
marrow haematopoiesis in rats. Int J Exp Pathol. 90:512–519.
2009.PubMed/NCBI View Article : Google Scholar
|
20
|
Du D, Zhou Z, Zhu L, Hu X, Lu J, Shi C,
Chen F and Chen A: TNF-α suppresses osteogenic differentiation of
MSCs by accelerating P2Y2 receptor in
estrogen-deficiency induced osteoporosis. Bone. 117:161–170.
2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Chen W, Chen X, Chen AC, Shi Q, Pan G, Pei
M, Yang H, Liu T and He F: Melatonin restores the
osteoporosis-impaired osteogenic potential of bone marrow
mesenchymal stem cells by preserving SIRT1-mediated intracellular
antioxidant properties. Free Radic Biol Med. 146:92–106.
2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
23
|
Song B, Estrada KD and Lyons KM: Smad
signaling in skeletal development and regeneration. Cytokine Growth
Factor Rev. 20:379–388. 2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Park JS, Kim M, Song NJ, Kim JH, Seo D,
Lee JH, Jung SM, Lee JY, Lee J, Lee YS, et al: A reciprocal role of
the Smad4-Taz axis in osteogenesis and adipogenesis of mesenchymal
stem cells. Stem Cells. 37:368–381. 2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Pakravan K, Razmara E, Mahmud Hussen B,
Sattarikia F, Sadeghizadeh M and Babashah S: SMAD4 contributes to
chondrocyte and osteocyte development. J Cell Mol Med. 26:1–15.
2022.PubMed/NCBI View Article : Google Scholar
|
26
|
Gu H, Huang Z, Yin X, Zhang J, Gong L,
Chen J, Rong K, Xu J, Lu L and Cui L: Role of c-Jun N-terminal
kinase in the osteogenic and adipogenic differentiation of human
adipose-derived mesenchymal stem cells. Exp Cell Res. 339:112–121.
2015.PubMed/NCBI View Article : Google Scholar
|
27
|
Li Y, Wagner ER, Yan Z, Wang Z, Luther G,
Jiang W, Ye J, Wei Q, Wang J, Zhao L, et al: The calcium-binding
protein S100A6 accelerates human osteosarcoma growth by promoting
cell proliferation and inhibiting osteogenic differentiation. Cell
Physiol Biochem. 37:2375–2392. 2015.PubMed/NCBI View Article : Google Scholar
|
28
|
Su Y, Qi R, Li L, Wang X, Li S, Zhao X,
Hou R, Ma W, Liu D, Zheng J and Shi M: An immune-related gene
prognostic risk index for pancreatic adenocarcinoma. Front Immunol.
13(945878)2022.PubMed/NCBI View Article : Google Scholar
|
29
|
Wang R, Wu Y, Yu J, Yang G, Yi H and Xu B:
Plasma messenger RNAs identified through bioinformatics analysis
are novel, non-invasive prostate cancer biomarkers. Onco Targets
Ther. 13:541–548. 2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Leclerc E and Vetter SW: The role of S100
proteins and their receptor RAGE in pancreatic cancer. Biochim
Biophys Acta. 1852:2706–2711. 2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhang X, Cao J, Pei Y, Zhang J and Wang Q:
Smad4 inhibits cell migration via suppression of JNK activity in
human pancreatic carcinoma PANC-1 cells. Oncol Lett.
11:3465–3470. 2016.PubMed/NCBI View Article : Google Scholar
|