Role of angiomotin family members in human diseases (Review)
- Authors:
- Haoyun Wang
- Meng Ye
- Xiaofeng Jin
-
Affiliations: Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China - Published online on: April 23, 2024 https://doi.org/10.3892/etm.2024.12546
- Article Number: 258
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Yi F, Xin L and Feng L: Potential mechanism of circRNA_000585 in cholangiocarcinoma. J Int Med Res. 49(3000605211024501)2021.PubMed/NCBI View Article : Google Scholar | |
Niu X, Chang W, Liu R, Hou R, Li J, Wang C, Li X and Zhang K: mRNA and protein expression of the angiogenesis-related genes EDIL3, AMOT and ECM1 in mesenchymal stem cells in psoriatic dermis. Clin Exp Dermatol. 41:533–540. 2016.PubMed/NCBI View Article : Google Scholar | |
Troyanovsky B, Levchenko T, Månsson G, Matvijenko O and Holmgren L: Angiomotin: An angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol. 152:1247–1254. 2001.PubMed/NCBI View Article : Google Scholar | |
O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Cao Y, Moses M, Lane WS, Sage EH and Folkman J: Angiostatin: A circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol. 59:471–482. 1994.PubMed/NCBI View Article : Google Scholar | |
Bratt A, Wilson WJ, Troyanovsky B, Aase K, Kessler R, Van Meir EG and Holmgren L: Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene. 298:69–77. 2002.PubMed/NCBI View Article : Google Scholar | |
Bratt A, Birot O, Sinha I, Veitonmäki N, Aase K, Ernkvist M and Holmgren L: Angiomotin regulates endothelial cell-cell junctions and cell motility. J Biol Chem. 280:34859–34869. 2005.PubMed/NCBI View Article : Google Scholar | |
Li Z, Wang Y, Zhang M, Xu P, Huang H, Wu D and Meng A: The Amotl2 gene inhibits Wnt/β-catenin signaling and regulates embryonic development in zebrafish. J Biol Chem. 287:13005–13015. 2012.PubMed/NCBI View Article : Google Scholar | |
Ernkvist M, Birot O, Sinha I, Veitonmaki N, Nyström S, Aase K and Holmgren L: Differential roles of p80- and p130-angiomotin in the switch between migration and stabilization of endothelial cells. Biochim Biophys Acta. 1783:429–437. 2008.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Li Z, Xu P, Huang L, Tong J, Huang H and Meng A: Angiomotin-like2 gene (amotl2) is required for migration and proliferation of endothelial cells during angiogenesis. J Biol Chem. 286:41095–41104. 2011.PubMed/NCBI View Article : Google Scholar | |
Wigerius M, Quinn D and Fawcett JP: Emerging roles for angiomotin in the nervous system. Sci Signal. 13(eabc0635)2020.PubMed/NCBI View Article : Google Scholar | |
Lavado A, Park JY, Paré J, Finkelstein D, Pan H, Xu B, Fan Y, Kumar RP, Neale G, Kwak YD, et al: The Hippo pathway prevents YAP/TAZ-driven hypertranscription and controls neural progenitor number. Dev Cell. 47:576–591.e8. 2018.PubMed/NCBI View Article : Google Scholar | |
Zaltsman Y, Masuko S, Bensen JJ and Kiessling LL: Angiomotin regulates YAP localization during neural differentiation of human pluripotent stem cells. Stem Cell Reports. 12:869–877. 2019.PubMed/NCBI View Article : Google Scholar | |
Lv M, Shen Y and Yang J, Li S, Wang B, Chen Z, Li P, Liu P and Yang J: Angiomotin family members: Oncogenes or tumor suppressors? Int J Biol Sci. 13:772–781. 2017.PubMed/NCBI View Article : Google Scholar | |
Jiang WG, Watkins G, Douglas-Jones A, Holmgren L and Mansel RE: Angiomotin and angiomotin like proteins, their expression and correlation with angiogenesis and clinical outcome in human breast cancer. BMC Cancer. 6(16)2006.PubMed/NCBI View Article : Google Scholar | |
Ruan W, Wang P, Feng S, Xue Y and Li Y: Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells. Tumour Biol. 37:4065–4073. 2016.PubMed/NCBI View Article : Google Scholar | |
Mojallal M, Zheng Y, Hultin S, Audebert S, van Harn T, Johnsson P, Lenander C, Fritz N, Mieth C, Corcoran M, et al: AmotL2 disrupts apical-basal cell polarity and promotes tumour invasion. Nat Commun. 5(4557)2014.PubMed/NCBI View Article : Google Scholar | |
Ortiz A, Lee YC, Yu G, Liu HC, Lin SC, Bilen MA, Cho H, Yu-Lee LY and Lin SH: Angiomotin is a novel component of cadherin-11/β-catenin/p120 complex and is critical for cadherin-11-mediated cell migration. FASEB J. 29:1080–1091. 2015.PubMed/NCBI View Article : Google Scholar | |
Hakami F, Darda L, Stafford P, Woll P, Lambert DW and Hunter KD: The roles of HOXD10 in the development and progression of head and neck squamous cell carcinoma (HNSCC). Br J Cancer. 111:807–816. 2014.PubMed/NCBI View Article : Google Scholar | |
Yi C, Shen Z, Stemmer-Rachamimov A, Dawany N, Troutman S, Showe LC, Liu Q, Shimono A, Sudol M, Holmgren L, et al: The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Sci Signal. 6(ra77)2013.PubMed/NCBI View Article : Google Scholar | |
Lv M, Li S, Luo C, Zhang X, Shen Y, Sui YX, Wang F, Wang X and Yang J, Liu P and Yang J: Angiomotin promotes renal epithelial and carcinoma cell proliferation by retaining the nuclear YAP. Oncotarget. 7:12393–12403. 2016.PubMed/NCBI View Article : Google Scholar | |
Hsu YL, Hung JY, Chou SH, Huang MS, Tsai MJ, Lin YS, Chiang SY, Ho YW, Wu CY and Kuo PL: Angiomotin decreases lung cancer progression by sequestering oncogenic YAP/TAZ and decreasing Cyr61 expression. Oncogene. 34:4056–4068. 2015.PubMed/NCBI View Article : Google Scholar | |
Artinian N, Cloninger C, Holmes B, Benavides-Serrato A, Bashir T and Gera J: Phosphorylation of the Hippo pathway component AMOTL2 by the mTORC2 kinase promotes YAP signaling, resulting in enhanced glioblastoma growth and invasiveness. J Biol Chem. 290:19387–19401. 2015.PubMed/NCBI View Article : Google Scholar | |
Barutello G, Curcio C, Spadaro M, Arigoni M, Trovato R, Bolli E, Zheng Y, Ria F, Quaglino E, Iezzi M, et al: Antitumor immunization of mothers delays tumor development in cancer-prone offspring. Oncoimmunology. 4(e1005500)2015.PubMed/NCBI View Article : Google Scholar | |
Li D, Shen Y, Ren H, Wang L, Yang J and Wang Y: Repression of linc01555 up-regulates angiomotin-p130 via the microRNA-122-5p/clic1 axis to impact vasculogenic mimicry-mediated chemotherapy resistance in small cell lung cancer. Cell Cycle. 22:255–268. 2023.PubMed/NCBI View Article : Google Scholar | |
Sang T, Yang J, Liu J, Han Y, Li Y, Zhou X and Wang X: AMOT suppresses tumor progression via regulating DNA damage response signaling in diffuse large B-cell lymphoma. Cancer Gene Ther. 28:1125–1135. 2021.PubMed/NCBI View Article : Google Scholar | |
Centorrino F, Andlovic B, Cossar P, Brunsveld L and Ottmann C: Fragment-based exploration of the 14-3-3/Amot-p130 interface. Curr Res Struct Biol. 4:21–28. 2022.PubMed/NCBI View Article : Google Scholar | |
Ernkvist M, Aase K, Ukomadu C, Wohlschlegel J, Blackman R, Veitonmäki N, Bratt A, Dutta A and Holmgren L: p130-angiomotin associates to actin and controls endothelial cell shape. FEBS J. 273:2000–2011. 2006.PubMed/NCBI View Article : Google Scholar | |
Wang C, An J, Zhang P, Xu C, Gao K, Wu D, Wang D, Yu H, Liu JO and Yu L: The Nedd4-like ubiquitin E3 ligases target angiomotin/p130 to ubiquitin-dependent degradation. Biochem J. 444:279–289. 2012.PubMed/NCBI View Article : Google Scholar | |
Webb C, Upadhyay A, Giuntini F, Eggleston I, Furutani-Seiki M, Ishima R and Bagby S: Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway. Biochemistry. 50:3300–3309. 2011.PubMed/NCBI View Article : Google Scholar | |
Ernkvist M, Luna Persson N, Audebert S, Lecine P, Sinha I, Liu M, Schlueter M, Horowitz A, Aase K, Weide T, et al: The Amot/Patj/Syx signaling complex spatially controls RhoA GTPase activity in migrating endothelial cells. Blood. 113:244–253. 2009.PubMed/NCBI View Article : Google Scholar | |
Gagné V, Moreau J, Plourde M, Lapointe M, Lord M, Gagnon E and Fernandes MJ: Human angiomotin-like 1 associates with an angiomotin protein complex through its coiled-coil domain and induces the remodeling of the actin cytoskeleton. Cell Motil Cytoskeleton. 66:754–768. 2009.PubMed/NCBI View Article : Google Scholar | |
Zhang H and Fan Q: MicroRNA-205 inhibits the proliferation and invasion of breast cancer by regulating AMOT expression. Oncol Rep. 34:2163–2170. 2015.PubMed/NCBI View Article : Google Scholar | |
Huang W, Zeng Z, Xu Y and Mai Z: Investigating whether exosomal miR-205-5p derived from tongue squamous cell carcinoma cells stimulates the angiogenic activity of HUVECs by targeting AMOT. Cancer Biomark. 38:215–224. 2023.PubMed/NCBI View Article : Google Scholar | |
Ruan WD, Wang P, Feng S, Xue Y and Zhang B: MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells. Onco Targets Ther. 9:303–313. 2016.PubMed/NCBI View Article : Google Scholar | |
Wan HY, Li QQ, Zhang Y, Tian W, Li YN, Liu M, Li X and Tang H: MiR-124 represses vasculogenic mimicry and cell motility by targeting amotL1 in cervical cancer cells. Cancer Lett. 355:148–158. 2014.PubMed/NCBI View Article : Google Scholar | |
Mana-Capelli S, Paramasivam M, Dutta S and McCollum D: Angiomotins link F-actin architecture to Hippo pathway signaling. Mol Biol Cell. 25:1676–1685. 2014.PubMed/NCBI View Article : Google Scholar | |
Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, et al: Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol. 23:1181–1194. 2013.PubMed/NCBI View Article : Google Scholar | |
DeRan M, Yang J, Shen CH, Peters EC, Fitamant J, Chan P, Hsieh M, Zhu S, Asara JM, Zheng B, et al: Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep. 9:495–503. 2014.PubMed/NCBI View Article : Google Scholar | |
Adler JJ, Johnson DE, Heller BL, Bringman LR, Ranahan WP, Conwell MD, Sun Y, Hudmon A and Wells CD: Serum deprivation inhibits the transcriptional co-activator YAP and cell growth via phosphorylation of the 130-kDa isoform of Angiomotin by the LATS1/2 protein kinases. Proc Natl Acad Sci USA. 110:17368–17373. 2013.PubMed/NCBI View Article : Google Scholar | |
Rheinemann L, Thompson T, Mercenne G, Paine EL, Peterson FC, Volkman BF, Alam SL, Alian A and Sundquist WI: Interactions between AMOT PPxY motifs and NEDD4L WW domains function in HIV-1 release. J Biol Chem. 297(100975)2021.PubMed/NCBI View Article : Google Scholar | |
Choi KS, Choi HJ, Lee JK, Im S, Zhang H, Jeong Y, Park JA, Lee IK, Kim YM and Kwon YG: The endothelial E3 ligase HECW2 promotes endothelial cell junctions by increasing AMOTL1 protein stability via K63-linked ubiquitination. Cell Signal. 28:1642–1651. 2016.PubMed/NCBI View Article : Google Scholar | |
Campbell CI, Samavarchi-Tehrani P, Barrios-Rodiles M, Datti A, Gingras AC and Wrana JL: The RNF146 and tankyrase pathway maintains the junctional Crumbs complex through regulation of angiomotin. J Cell Sci. 129:3396–3411. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Zhu Y, Wang Y, Chang Y, Geng F, Ma M, Gu Y, Yu A, Zhu R, Yu P, et al: Proteolytic activation of angiomotin by DDI2 promotes angiogenesis. EMBO J. 42(e112900)2023.PubMed/NCBI View Article : Google Scholar | |
Toloczko A, Guo F, Yuen HF, Wen Q, Wood SA, Ong YS, Chan PY, Shaik AA, Gunaratne J, Dunne MJ, et al: Deubiquitinating enzyme USP9X suppresses tumor growth via LATS kinase and core components of the Hippo pathway. Cancer Res. 77:4921–4933. 2017.PubMed/NCBI View Article : Google Scholar | |
Cao R, Zhu R, Sha Z, Qi S, Zhong Z, Zheng F, Lei Y, Tan Y, Zhu Y, Wang Y, et al: WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT. Cell Death Dis. 14(491)2023.PubMed/NCBI View Article : Google Scholar | |
Ragni CV, Diguet N, Le Garrec JF, Novotova M, Resende TP, Pop S, Charon N, Guillemot L, Kitasato L, Badouel C, et al: Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth. Nat Commun. 8(14582)2017.PubMed/NCBI View Article : Google Scholar | |
Shi Q, Zheng L, Na J, Li X, Yang Z, Chen X, Song Y, Li C, Zhou L and Fan Y: Fluid shear stress promotes periodontal ligament cells proliferation via p38-AMOT-YAP. Cell Mol Life Sci. 79(551)2022.PubMed/NCBI View Article : Google Scholar | |
Maeso-Alonso L, Alonso-Olivares H, Martínez-García N, López-Ferreras L, Villoch-Fernández J, Puente-Santamaría L, Colas-Algora N, Fernández-Corona A, Lorenzo-Marcos ME, Jiménez B, et al: p73 is required for vessel integrity controlling endothelial junctional dynamics through angiomotin. Cell Mol Life Sci. 79(535)2022.PubMed/NCBI View Article : Google Scholar | |
Tian Q, Gao H, Zhou Y, Zhu L and Yang J, Wang B, Liu P and Yang J: RICH1 inhibits breast cancer stem cell traits through activating kinases cascade of Hippo signaling by competing with Merlin for binding to Amot-p80. Cell Death Dis. 13(71)2022.PubMed/NCBI View Article : Google Scholar | |
Liang J, Ruthel G, Freedman BD and Harty RN: WWOX-mediated degradation of AMOTp130 negatively affects egress of filovirus VP40 virus-like particles. J Virol. 96(e0202621)2022.PubMed/NCBI View Article : Google Scholar | |
Han Z, Ruthel G, Dash S, Berry CT, Freedman BD, Harty RN and Shtanko O: Angiomotin regulates budding and spread of Ebola virus. J Biol Chem. 295:8596–8601. 2020.PubMed/NCBI View Article : Google Scholar | |
Liang J, Ruthel G, Sagum CA, Bedford MT, Sidhu SS, Sudol M, Jaladanki CK, Fan H, Freedman BD and Harty RN: Angiomotin counteracts the negative regulatory effect of host WWOX on viral PPxY-mediated egress. J Virol. 95:e00121–21. 2021.PubMed/NCBI View Article : Google Scholar | |
Yang WS, Yeh WW, Campbell M, Chang L and Chang PC: Long non-coding RNA KIKAT/LINC01061 as a novel epigenetic regulator that relocates KDM4A on chromatin and modulates viral reactivation. PLoS Pathog. 17(e1009670)2021.PubMed/NCBI View Article : Google Scholar | |
Basak T, Dey AK, Banerjee R, Paul S, Maiti TK and Ain R: Sequestration of eIF4A by angiomotin: A novel mechanism to restrict global protein synthesis in trophoblast cells. Stem Cells. 39:210–226. 2021.PubMed/NCBI View Article : Google Scholar | |
Tam PP and Behringer RR: Mouse gastrulation: The formation of a mammalian body plan. Mech Dev. 68:3–25. 1997.PubMed/NCBI View Article : Google Scholar | |
Shimono A and Behringer RR: Angiomotin regulates visceral endoderm movements during mouse embryogenesis. Curr Biol. 13:613–617. 2003.PubMed/NCBI View Article : Google Scholar | |
Huang H, Lu FI, Jia S, Meng S, Cao Y, Wang Y, Ma W, Yin K, Wen Z, Peng J, et al: Amotl2 is essential for cell movements in zebrafish embryo and regulates c-Src translocation. Development. 134:979–988. 2007.PubMed/NCBI View Article : Google Scholar | |
Dai X, She P, Chi F, Feng Y, Liu H, Jin D, Zhao Y, Guo X, Jiang D, Guan KL, et al: Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. J Biol Chem. 288:34041–34051. 2013.PubMed/NCBI View Article : Google Scholar | |
Hirate Y and Sasaki H: The role of angiomotin phosphorylation in the Hippo pathway during preimplantation mouse development. Tissue Barriers. 2:e28127. 2014.PubMed/NCBI View Article : Google Scholar | |
Mihajlović AI and Bruce AW: Rho-associated protein kinase regulates subcellular localisation of angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reprod Biomed Online. 33:381–390. 2016.PubMed/NCBI View Article : Google Scholar | |
Matsumoto H, Fukui E, Yoshizawa M, Sato E and Daikoku T: Differential expression of the motin family in the peri-implantation mouse uterus and their hormonal regulation. J Reprod Dev. 58:649–653. 2012.PubMed/NCBI View Article : Google Scholar | |
Levchenko T, Aase K, Troyanovsky B, Bratt A and Holmgren L: Loss of responsiveness to chemotactic factors by deletion of the C-terminal protein interaction site of angiomotin. J Cell Sci. 116:3803–3810. 2003.PubMed/NCBI View Article : Google Scholar | |
Kim SY, Park SY, Jang HS, Park YD and Kee SH: Yes-associated protein is required for ZO-1-mediated tight-junction integrity and cell migration in E-cadherin-restored AGS gastric cancer cells. Biomedicines. 9(1264)2021.PubMed/NCBI View Article : Google Scholar | |
Sugihara-Mizuno Y, Adachi M, Kobayashi Y, Hamazaki Y, Nishimura M, Imai T, Furuse M and Tsukita S: Molecular characterization of angiomotin/JEAP family proteins: Interaction with MUPP1/Patj and their endogenous properties. Genes Cells. 12:473–486. 2007.PubMed/NCBI View Article : Google Scholar | |
Sistani L, Dunér F, Udumala S, Hultenby K, Uhlen M, Betsholtz C, Tryggvason K, Wernerson A and Patrakka J: Pdlim2 is a novel actin-regulating protein of podocyte foot processes. Kidney Int. 80:1045–1054. 2011.PubMed/NCBI View Article : Google Scholar | |
Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, Kulkarni S, Gish G, Virag C, Lim C, et al: A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell. 125:535–548. 2006.PubMed/NCBI View Article : Google Scholar | |
Aase K, Ernkvist M, Ebarasi L, Jakobsson L, Majumdar A, Yi C, Birot O, Ming Y, Kvanta A, Edholm D, et al: Angiomotin regulates endothelial cell migration during embryonic angiogenesis. Genes Dev. 21:2055–2068. 2007.PubMed/NCBI View Article : Google Scholar | |
Xiao J, Jin K, Wang J, Ma J, Zhang J, Jiang N, Wang H, Luo X, Fei J, Wang Z, et al: Conditional knockout of TFPI-1 in VSMCs of mice accelerates atherosclerosis by enhancing AMOT/YAP pathway. Int J Cardiol. 228:605–614. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Zhang Y, Kameishi S, Barutello G, Zheng Y, Tobin NP, Nicosia J, Hennig K, Chiu DK, Balland M, et al: The Amot/integrin protein complex transmits mechanical forces required for vascular expansion. Cell Rep. 36(109616)2021.PubMed/NCBI View Article : Google Scholar | |
Garnaas MK, Moodie KL, Liu ML, Samant GV, Li K, Marx R, Baraban JM, Horowitz A and Ramchandran R: Syx, a RhoA guanine exchange factor, is essential for angiogenesis in vivo. Circ Res. 103:710–716. 2008.PubMed/NCBI View Article : Google Scholar | |
Wu C, Agrawal S, Vasanji A, Drazba J, Sarkaria S, Xie J, Welch CM, Liu M, Anand-Apte B and Horowitz A: Rab13-dependent trafficking of RhoA is required for directional migration and angiogenesis. J Biol Chem. 286:23511–23520. 2011.PubMed/NCBI View Article : Google Scholar | |
Zheng Y, Zhang Y, Barutello G, Chiu K, Arigoni M, Giampietro C, Cavallo F and Holmgren L: Angiomotin like-1 is a novel component of the N-cadherin complex affecting endothelial/pericyte interaction in normal and tumor angiogenesis. Sci Rep. 6(30622)2016.PubMed/NCBI View Article : Google Scholar | |
Hultin S, Zheng Y, Mojallal M, Vertuani S, Gentili C, Balland M, Milloud R, Belting HG, Affolter M, Helker CS, et al: AmotL2 links VE-cadherin to contractile actin fibres necessary for aortic lumen expansion. Nat Commun. 5(3743)2014.PubMed/NCBI View Article : Google Scholar | |
Roudier E, Chapados N, Decary S, Gineste C, Le Bel C, Lavoie JM, Bergeron R and Birot O: Angiomotin p80/p130 ratio: a new indicator of exercise-induced angiogenic activity in skeletal muscles from obese and non-obese rats? J Physiol. 587:4105–4119. 2009.PubMed/NCBI View Article : Google Scholar | |
Lee SW, Clemenson GD and Gage FH: New neurons in an aged brain. Behav Brain Res. 227:497–507. 2012.PubMed/NCBI View Article : Google Scholar | |
Lim DA and Alvarez-Buylla A: The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb Perspect. 8(a018820)2016.PubMed/NCBI View Article : Google Scholar | |
Gage FH: Mammalian neural stem cells. Science. 287:1433–1438. 2000.PubMed/NCBI View Article : Google Scholar | |
Winner B, Kohl Z and Gage FH: Neurodegenerative disease and adult neurogenesis. Eur J Neurosci. 33:1139–1151. 2011.PubMed/NCBI View Article : Google Scholar | |
de Oliveira NB, Irioda AC, Stricker PEF, Mogharbel BF, da Rosa NN, Dziedzic DSM and de Carvalho KAT: Natural membrane differentiates human adipose-derived mesenchymal stem cells to neurospheres by mechanotransduction related to YAP and AMOT proteins. Membranes (Basel). 11(687)2021.PubMed/NCBI View Article : Google Scholar | |
Cao X, Pfaff SL and Gage FH: YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev. 22:3320–3334. 2008.PubMed/NCBI View Article : Google Scholar | |
Kang PH, Schaffer DV and Kumar S: Angiomotin links ROCK and YAP signaling in mechanosensitive differentiation of neural stem cells. Mol Biol Cell. 31:386–396. 2020.PubMed/NCBI View Article : Google Scholar | |
Park SJ, Frake RA and Rubinsztein DC: Increased SORBS3 expression in brain ageing contributes to autophagic decline via YAP1-WWTR1/TAZ signaling. Autophagy. 19:943–944. 2023.PubMed/NCBI View Article : Google Scholar | |
Smutny M and Yap AS: Neighborly relations: Cadherins and mechanotransduction. J Cell Biol. 189:1075–1077. 2010.PubMed/NCBI View Article : Google Scholar | |
Naujokat C and Sarić T: Concise review: Role and function of the ubiquitin-proteasome system in mammalian stem and progenitor cells. Stem Cells. 25:2408–2418. 2007.PubMed/NCBI View Article : Google Scholar | |
Rojek KO, Krzemień J, Doleżyczek H, Boguszewski PM, Kaczmarek L, Konopka W, Rylski M, Jaworski J, Holmgren L and Prószyński TJ: Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 17(e3000253)2019.PubMed/NCBI View Article : Google Scholar | |
Biever A, Valjent E and Puighermanal E: Ribosomal protein S6 phosphorylation in the nervous system: From regulation to function. Front Mol Neurosci. 8(75)2015.PubMed/NCBI View Article : Google Scholar | |
Magnuson B, Ekim B and Fingar DC: Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. 441:1–21. 2012.PubMed/NCBI View Article : Google Scholar | |
Koleske AJ: Molecular mechanisms of dendrite stability. Nat Rev Neurosci. 14:536–550. 2013.PubMed/NCBI View Article : Google Scholar | |
Marchenko OO, Das S, Yu J, Novak IL, Rodionov VI, Efimova N, Svitkina T, Wolgemuth CW and Loew LM: A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites. Mol Biol Cell. 28:1021–1033. 2017.PubMed/NCBI View Article : Google Scholar | |
Wigerius M, Quinn D, Diab A, Clattenburg L, Kolar A, Qi J, Krueger SR and Fawcett JP: The polarity protein Angiomotin p130 controls dendritic spine maturation. J Cell Biol. 217:715–730. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Yuan J, Zhang X, Yan F, Huang M, Wang T, Zheng X and Zhang M: Angiomotin promotes the malignant potential of colon cancer cells by activating the YAP-ERK/PI3K-AKT signaling pathway. Oncol Rep. 36:3619–3626. 2016.PubMed/NCBI View Article : Google Scholar | |
Ranahan WP, Han Z, Smith-Kinnaman W, Nabinger SC, Heller B, Herbert BS, Chan R and Wells CD: The adaptor protein AMOT promotes the proliferation of mammary epithelial cells via the prolonged activation of the extracellular signal-regulated kinases. Cancer Res. 71:2203–2211. 2011.PubMed/NCBI View Article : Google Scholar | |
Lv M, Lv M, Chen L, Qin T, Zhang X, Liu P and Yang J: Angiomotin promotes breast cancer cell proliferation and invasion. Oncol Rep. 33:1938–1946. 2015.PubMed/NCBI View Article : Google Scholar | |
Qiu Y, Mao YT, Zhu JH, Zhao K, Wang JF, Huang JM, Chang GQ, Guan YT, Huang FY, Hu YJ, et al: CLIC1 knockout inhibits invasion and migration of gastric cancer by upregulating AMOT-p130 expression. Clin Transl Oncol. 23:514–525. 2021.PubMed/NCBI View Article : Google Scholar | |
Li D, Shen Y, Ren H, Wang L, Yang J and Wang Y: Angiomotin-p130 inhibits vasculogenic mimicry formation of small cell lung cancer independently of Smad2/3 signal pathway. J Bioenerg Biomembr. 53:295–305. 2021.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Justilien V, Brennan KI, Jamieson L, Murray NR and Fields AP: PKCι regulates nuclear YAP1 localization and ovarian cancer tumorigenesis. Oncogene. 36:534–545. 2017.PubMed/NCBI View Article : Google Scholar | |
Oka T, Schmitt AP and Sudol M: Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene. 31:128–134. 2012.PubMed/NCBI View Article : Google Scholar | |
Couderc C, Boin A, Fuhrmann L, Vincent-Salomon A, Mandati V, Kieffer Y, Mechta-Grigoriou F, Del Maestro L, Chavrier P, Vallerand D, et al: AMOTL1 promotes breast cancer progression and is antagonized by merlin. Neoplasia. 18:10–24. 2016.PubMed/NCBI View Article : Google Scholar | |
Ozawa MG, Bhaduri A, Chisholm KM, Baker SA, Ma L, Zehnder JL, Luna-Fineman S, Link MP, Merker JD, Arber DA and Ohgami RS: A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma. Mod Pathol. 29:1212–1220. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q and Guan KL: Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 25:51–63. 2011.PubMed/NCBI View Article : Google Scholar | |
Lucci V, Di Palma T, D'Ambrosio C, Scaloni A and Zannini M: AMOTL2 interaction with TAZ causes the inhibition of surfactant proteins expression in lung cells. Gene. 529:300–306. 2013.PubMed/NCBI View Article : Google Scholar | |
Holmgren L, Ambrosino E, Birot O, Tullus C, Veitonmäki N, Levchenko T, Carlson LM, Musiani P, Iezzi M, Curcio C, et al: A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth. Proc Natl Acad Sci USA. 103:9208–9213. 2006.PubMed/NCBI View Article : Google Scholar | |
Levchenko T, Veitonmäki N, Lundkvist A, Gerhardt H, Ming Y, Berggren K, Kvanta A, Carlsson R and Holmgren L: Therapeutic antibodies targeting angiomotin inhibit angiogenesis in vivo. FASEB J. 22:880–889. 2008.PubMed/NCBI View Article : Google Scholar | |
Adams E, Sepich-Poore GD, Miller-Montgomery S and Knight R: Using all our genomes: Blood-based liquid biopsies for the early detection of cancer. View (Beijing). 3(20200118)2022.PubMed/NCBI View Article : Google Scholar | |
Peng W, Li W, Han H, Liu H, Liu P, Gong X and Chang J: Development of chromogenic detection for biomolecular analysis. View. 3(20200191)2022. | |
Wang L, Zhang M, Pan X, Zhao M, Huang L, Hu X, Wang X, Qiao L, Guo Q, Xu W, et al: Integrative serum metabolic fingerprints based multi-modal platforms for lung adenocarcinoma early detection and pulmonary nodule classification. Adv Sci (Weinh). 9(e2203786)2022.PubMed/NCBI View Article : Google Scholar |