1
|
Ronco C, Bellomo R and Kellum JA: Acute
kidney injury. Lancet. 394:1949–1964. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Shaikhouni S and Yessayan L: Management of
acute kidney injury/renal replacement therapy in the intensive care
unit. Surg Clin North Am. 102:181–198. 2022.PubMed/NCBI View Article : Google Scholar
|
3
|
Thapa K, Singh TG and Kaur A: Targeting
ferroptosis in ischemia/reperfusion renal injury. Naunyn
Schmiedebergs Arch Pharmacol. 395:1331–1341. 2022.PubMed/NCBI View Article : Google Scholar
|
4
|
Kaya C, Karabulut R, Turkyilmaz Z, Sonmez
K, Kulduk G, Gülbahar Ö, Köse F and Basaklar AC: Lycopene has
reduced renal damage histopathologically and biochemically in
experimental renal ischemia-reperfusion injury. Ren Fail.
37:1390–1395. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Kinra M, Mudgal J, Arora D and Nampoothiri
M: An insight into the role of cyclooxygenase and lipooxygenase
pathway in renal ischemia. Eur Rev Med Pharmacol Sci. 21:5017–5020.
2017.PubMed/NCBI
|
6
|
Miao AF, Liang JX, Yao L, Han JL and Zhou
LJ: Hypoxia-inducible factor prolyl hydroxylase inhibitor
roxadustat (FG-4592) protects against renal ischemia/reperfusion
injury by inhibiting inflammation. Ren Fail. 43:803–810.
2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Katagiri D, Wang F, Gore JC, Harris RC and
Takahashi T: Clinical and experimental approaches for imaging of
acute kidney injury. Clin Exp Nephrol. 25:685–699. 2021.PubMed/NCBI View Article : Google Scholar
|
8
|
Tao Q, Zhang Q, An Z, Chen Z and Feng Y:
Multi-Parametric MRI for evaluating variations in renal structure,
function, and endogenous metabolites in an animal model with acute
kidney injury induced by ischemia reperfusion. J Magn Reson
Imaging: Oct 26, 2023 (Epub ahead of print).
|
9
|
Bonventre JV and Yang L: Cellular
pathophysiology of ischemic acute kidney injury. J Clin Invest.
121:4210–4221. 2011.PubMed/NCBI View
Article : Google Scholar
|
10
|
Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng
YL, Cheng PW, Li CY and Li CJ: Current mechanistic concepts in
ischemia and reperfusion injury. Cell Physiol Biochem.
46:1650–1667. 2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Nath KA and Norby SM: Reactive oxygen
species and acute renal failure. Am J Med. 109:665–678.
2000.PubMed/NCBI View Article : Google Scholar
|
12
|
Zhu H, Tan Y, Du W, Li Y, Toan S, Mui D,
Tian F and Zhou H: Phosphoglycerate mutase 5 exacerbates cardiac
ischemia-reperfusion injury through disrupting mitochondrial
quality control. Redox Biol. 38(101777)2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Malek M and Nematbakhsh M: Renal
ischemia/reperfusion injury; from pathophysiology to treatment. J
Renal Inj Prev. 4:20–27. 2015.PubMed/NCBI View Article : Google Scholar
|
14
|
Lin Y, Xu L, Lin H, Cui W, Jiao Y, Wang B,
Li H, Wang X and Wu J: Network pharmacology and experimental
validation to investigate the mechanism of Nao-Ling-Su capsule in
the treatment of ischemia/reperfusion-induced acute kidney injury.
J Ethnopharmacol. 326(117958)2024.PubMed/NCBI View Article : Google Scholar
|
15
|
Ruiz-Rodríguez MA, Vedani A,
Flores-Mireles AL, Cháirez-Ramírez MH, Gallegos-Infante JA and
González-Laredo RF: In Silico prediction of the toxic potential of
lupeol. Chem Res Toxicol. 30:1562–1571. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Liu K, Zhang X, Xie L, Deng M, Chen H,
Song J, Long J, Li X and Luo J: Lupeol and its derivatives as
anticancer and anti-inflammatory agents: Molecular mechanisms and
therapeutic efficacy. Pharmacol Res. 164(105373)2021.PubMed/NCBI View Article : Google Scholar
|
17
|
Sohag AAM, Hossain MT, Rahaman MA, Rahman
P, Hasan MS, Das RC, Khan MK, Sikder MH, Alam M, Uddin MJ, et al:
Molecular pharmacology and therapeutic advances of the pentacyclic
triterpene lupeol. Phytomedicine. 99(154012)2022.PubMed/NCBI View Article : Google Scholar
|
18
|
Park JS, Rehman IU, Choe K, Ahmad R, Lee
HJ and Kim MO: A triterpenoid lupeol as an antioxidant and
anti-neuroinflammatory agent: Impacts on oxidative stress in
Alzheimer's disease. Nutrients. 15(3059)2023.PubMed/NCBI View Article : Google Scholar
|
19
|
Schloss J, Ryan K, Reid R and Steel A: A
randomised, double-blind, placebo-controlled clinical trial
assessing the efficacy of bedtime buddy® for the treatment of
nocturnal enuresis in children. BMC Pediatr. 19(421)2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Sudhahar V, Ashok Kumar S, Varalakshmi P
and Sujatha V: Protective effect of lupeol and lupeol linoleate in
hypercholesterolemia associated renal damage. Mol Cell Biochem.
317:11–20. 2008.PubMed/NCBI View Article : Google Scholar
|
21
|
Nitta M, Azuma K, Hata K, Takahashi S,
Ogiwara K, Tsuka T, Imagawa T, Yokoe I, Osaki T, Minami S and
Okamoto Y: Systemic and local injections of lupeol inhibit tumor
growth in a melanoma-bearing mouse model. Biomed Rep. 1:641–645.
2013.PubMed/NCBI View Article : Google Scholar
|
22
|
Sunitha S, Nagaraj M and Varalakshmi P:
Hepatoprotective effect of lupeol and lupeol linoleate on tissue
antioxidant defence system in cadmium-induced hepatotoxicity in
rats. Fitoterapia. 72:516–523. 2001.PubMed/NCBI View Article : Google Scholar
|
23
|
Murtaza I, Saleem M, Adhami VM, Hafeez BB
and Mukhtar H: Suppression of cFLIP by lupeol, a dietary
triterpene, is sufficient to overcome resistance to TRAIL-mediated
apoptosis in chemoresistant human pancreatic cancer cells. Cancer
Res. 69:1156–1165. 2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Saleem M, Afaq F, Adhami VM and Mukhtar H:
Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin
cancer in CD-1 mice. Oncogene. 23:5203–5214. 2004.PubMed/NCBI View Article : Google Scholar
|
25
|
Siddique HR and Saleem M: Beneficial
health effects of lupeol triterpene: A review of preclinical
studies. Life Sci. 88:285–293. 2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Ahmad SF, Pandey A, Kour K and Bani S:
Downregulation of pro-inflammatory cytokines by lupeol measured
using cytometric bead array immunoassay. Phytother Res. 24:9–13.
2010.PubMed/NCBI View Article : Google Scholar
|
27
|
Al-Mousawi AM, Kulp GA, Branski LK, Kraft
R, Mecott GA, Williams FN, Herndon DN and Jeschke MG: Impact of
anesthesia, analgesia, and euthanasia technique on the inflammatory
cytokine profile in a rodent model of severe burn injury. Shock.
34:261–268. 2010.PubMed/NCBI View Article : Google Scholar
|
28
|
Rampil IJ and Laster MJ: No correlation
between quantitative electroencephalographic measurements and
movement response to noxious stimuli during isoflurane anesthesia
in rats. Anesthesiology. 77:920–925. 1992.PubMed/NCBI View Article : Google Scholar
|
29
|
Kumari A and Kakkar P: Lupeol protects
against acetaminophen-induced oxidative stress and cell death in
rat primary hepatocytes. Food Chem Toxicol. 50:1781–1789.
2012.PubMed/NCBI View Article : Google Scholar
|
30
|
Liu H, Wang L, Weng X, Chen H, Du Y, Diao
C, Chen Z and Liu X: Inhibition of Brd4 alleviates renal
ischemia/reperfusion injury-induced apoptosis and endoplasmic
reticulum stress by blocking FoxO4-mediated oxidative stress. Redox
Biol. 24(101195)2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Zheng Y, Zhang N and Bai F: Gastrodin
pretreatment alleviates renal ischemia-reperfusion injury. Urol
Int. 106:630–637. 2022.PubMed/NCBI View Article : Google Scholar
|
32
|
Feng W, Remedies CE, Obi IE, Aldous SR,
Meera SI, Sanders PW, Inscho EW and Guan Z: Restoration of afferent
arteriolar autoregulatory behavior in ischemia-reperfusion injury
in rat kidneys. Am J Physiol Renal Physiol. 320:F429–F441.
2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Williams P, Lopez H, Britt D, Chan C,
Ezrin A and Hottendorf R: Characterization of renal
ischemia-reperfusion injury in rats. J Pharmacol Toxicol Methods.
37:1–7. 1997.PubMed/NCBI View Article : Google Scholar
|
34
|
Chatterjee PK: Novel pharmacological
approaches to the treatment of renal ischemia-reperfusion injury: A
comprehensive review. Naunyn Schmiedebergs Arch Pharmacol.
376:1–43. 2007.PubMed/NCBI View Article : Google Scholar
|
35
|
Eryilmaz S, Turkyilmaz Z, Karabulut R,
Gulburun MA, Poyraz A, Gulbahar O, Arslan B and Sonmez K: The
effects of hydrogen-rich saline solution on intestinal anastomosis
performed after intestinal ischemia reperfusion injury. J Pediatr
Surg. 55:1574–1578. 2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Shan Y, Chen D, Hu B, Xu G, Li W, Jin Y,
Jin X, Jin X and Jin L: Allicin ameliorates renal
ischemia/reperfusion injury via inhibition of oxidative stress and
inflammation in rats. Biomed Pharmacother.
142(112077)2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Zhang Y, Liu M, Zhang Y, Tian M, Chen P,
Lan Y and Zhou B: Urolithin A alleviates acute kidney injury
induced by renal ischemia reperfusion through the p62-Keap1-Nrf2
signaling pathway. Phytother Res. 36:984–995. 2022.PubMed/NCBI View Article : Google Scholar
|
38
|
Wang Q, Ju F, Li J, Liu T, Zuo Y, Abbott
GW and Hu Z: Empagliflozin protects against renal
ischemia/reperfusion injury in mice. Sci Rep.
12(19323)2022.PubMed/NCBI View Article : Google Scholar
|
39
|
Tang S, Xie X, Wang M, Yang L and Wei W:
Protective effects of asiaticoside on renal ischemia reperfusion
injury in vivo and in vitro. Bioengineered. 13:10235–10243.
2022.PubMed/NCBI View Article : Google Scholar
|
40
|
Nezamoleslami S, Sheibani M, Jahanshahi F,
Mumtaz F, Abbasi A and Dehpour AR: Protective effect of dapsone
against renal ischemia-reperfusion injury in rat. Immunopharmacol
Immunotoxicol. 42:272–279. 2020.PubMed/NCBI View Article : Google Scholar
|
41
|
Beserra FP, Vieira AJ, Gushiken LFS, de
Souza EO, Hussni MF, Hussni CA, Nóbrega RH, Martinez ERM, Jackson
CJ, de Azevedo Maia GL, et al: Lupeol, a dietary triterpene,
enhances wound healing in streptozotocin-induced hyperglycemic rats
with modulatory effects on inflammation, oxidative stress, and
angiogenesis. Oxid Med Cell Longev. 2019(3182627)2019.PubMed/NCBI View Article : Google Scholar
|
42
|
Preetha SP, Kanniappan M, Selvakumar E,
Nagaraj M and Varalakshmi P: Lupeol ameliorates aflatoxin
B1-induced peroxidative hepatic damage in rats. Comp Biochem
Physiol C Toxicol Pharmacol. 143:333–339. 2006.PubMed/NCBI View Article : Google Scholar
|
43
|
Zhang Z, Xu C, Hao J, Zhang M, Wang Z, Yin
T, Lin K, Liu W, Jiang Q, Li Z, et al: Beneficial consequences of
Lupeol on middle cerebral artery-induced cerebral ischemia in the
rat involves Nrf2 and P38 MAPK modulation. Metab Brain Dis.
35:841–848. 2020.PubMed/NCBI View Article : Google Scholar
|
44
|
Asha R, Gayathri Devi V and Abraham A:
Lupeol, a pentacyclic triterpenoid isolated from Vernonia cinerea
attenuate selenite induced cataract formation in Sprague Dawley rat
pups. Chem Biol Interact. 245:20–29. 2016.PubMed/NCBI View Article : Google Scholar
|
45
|
Li J, Ma X, Yang J, Wang L, Huang Y and
Zhu Y: Lupeol alleviates myocardial ischemia-reperfusion injury in
rats by regulating NF-[Formula: See text]B and Nrf2 pathways. Am J
Chin Med. 50:1269–1280. 2022.PubMed/NCBI View Article : Google Scholar
|
46
|
Srivastava AK, Mishra S, Ali W and Shukla
Y: Protective effects of lupeol against mancozeb-induced
genotoxicity in cultured human lymphocytes. Phytomedicine.
23:714–724. 2016.PubMed/NCBI View Article : Google Scholar
|
47
|
Kim MJ, Bae GS, Choi SB, Jo IJ, Kim DG,
Shin JY, Lee SK, Kim MJ, Song HJ and Park SJ: Lupeol protects
against cerulein-induced acute pancreatitis in mice. Phytother Res.
29:1634–1639. 2015.PubMed/NCBI View Article : Google Scholar
|
48
|
Ni J, Jiang L, Shen G, Xia Z, Zhang L, Xu
J, Feng Q, Qu H, Xu F and Li X: Hydrogen sulfide reduces pyroptosis
and alleviates ischemia-reperfusion-induced acute kidney injury by
inhibiting NLRP3 inflammasome. Life Sci. 284(119466)2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Zhang B, Wan S, Liu H, Qiu Q, Chen H, Chen
Z, Wang L and Liu X: Naringenin alleviates renal ischemia
reperfusion injury by suppressing ER stress-induced pyroptosis and
apoptosis through activating Nrf2/HO-1 signaling pathway. Oxid Med
Cell Longev. 2022(5992436)2022.PubMed/NCBI View Article : Google Scholar
|
50
|
Wang Z, Han Y, Tian S, Bao J, Wang Y and
Jiao J: Lupeol alleviates cerebral ischemia-reperfusion injury in
correlation with modulation of PI3K/Akt pathway. Neuropsychiatr Dis
Treat. 16:1381–1390. 2020.PubMed/NCBI View Article : Google Scholar
|
51
|
Karimi G, Ramezani M and Tahoonian Z:
Cisplatin nephrotoxicity and protection by milk thistle extract in
rats. Evid Based Complement Alternat Med. 2:383–386.
2005.PubMed/NCBI View Article : Google Scholar
|
52
|
Yokoe I, Azuma K, Hata K, Mukaiyama T,
Goto T, Tsuka T, Imagawa T, Itoh N, Murahata Y, Osaki T, et al:
Clinical systemic lupeol administration for canine oral malignant
melanoma. Mol Clin Oncol. 3:89–92. 2015.PubMed/NCBI View Article : Google Scholar
|
53
|
Jesus JA, da Silva TNF, Sousa IMO,
Ferreira AF, Laurenti MD, da Costa PC, de Carvalho Ferreira D and
Passero LFD: Nanostructured lipid carriers as robust systems for
lupeol delivery in the treatment of experimental visceral
leishmaniasis. Pharmaceuticals (Basel). 16(1646)2023.PubMed/NCBI View Article : Google Scholar
|
54
|
Cháirez-Ramírez MH, Gallegos-Infante JA,
Moreno-Jiménez MR, González-Laredo RF and Rocha-Guzmán NE:
Absorption and distribution of lupeol in CD-1 mice evaluated by
UPLC-APCI+ -MS/MS. Biomed Chromatogr.
33(e4432)2019.PubMed/NCBI View Article : Google Scholar
|
55
|
Yang X, Feng Y, Liu Y, Ye X, Ji X, Sun L,
Gao F, Zhang Q, Li Y, Zhu B and Wang X: Fuzheng Jiedu Xiaoji
formulation inhibits hepatocellular carcinoma progression in
patients by targeting the AKT/CyclinD1/p21/p27 pathway.
Phytomedicine. 87(153575)2021.PubMed/NCBI View Article : Google Scholar
|