Role of circular RNAs in preeclampsia (Review)
- Authors:
- Hengxue Jiang
- Tao Meng
- Ziwei Li
-
Affiliations: Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China - Published online on: July 23, 2024 https://doi.org/10.3892/etm.2024.12661
- Article Number: 372
-
Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Smid M, Wilting SM, Uhr K, Rodríguez-González FG, de Weerd V, Prager-Van der Smissen WJC, van der Vlugt-Daane M, van Galen A, Nik-Zainal S, Butler A, et al: The circular RNome of primary breast cancer. Genome Res. 29:356–366. 2019.PubMed/NCBI View Article : Google Scholar | |
Cocquerelle C, Mascrez B, Hétuin D and Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J. 7:155–160. 1993.PubMed/NCBI View Article : Google Scholar | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.PubMed/NCBI View Article : Google Scholar | |
Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell Rep. 8:284–296. 2014.PubMed/NCBI View Article : Google Scholar | |
Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C and Rajewsky N: Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10:170–177. 2015.PubMed/NCBI View Article : Google Scholar | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013.PubMed/NCBI View Article : Google Scholar | |
Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9(e1003777)2013.PubMed/NCBI View Article : Google Scholar | |
Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR and Lai EC: Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9:1966–1980. 2014.PubMed/NCBI View Article : Google Scholar | |
Maass PG, Glažar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, Sauer AV, Toka O, Aiuti A, Luft FC and Rajewsky N: A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl). 95:1179–1189. 2017.PubMed/NCBI View Article : Google Scholar | |
Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 38:1402–1412. 2017.PubMed/NCBI View Article : Google Scholar | |
Ruan H, Xiang Y, Ko J, Li S, Jing Y, Zhu X, Ye Y, Zhang Z, Mills T, Feng J, et al: Comprehensive characterization of circular RNAs in ~ 1000 human cancer cell lines. Genome Med. 11(55)2019.PubMed/NCBI View Article : Google Scholar | |
Tang R, Zhang Z and Han W: CircLRRK1 targets miR-223-3p to inhibit the proliferation, migration and invasion of trophoblast cells by regulating the PI3K/AKT signaling pathway. Placenta. 104:110–118. 2021.PubMed/NCBI View Article : Google Scholar | |
Wei L, Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, Xu X, Liang Q, Christiani DC, et al: Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer. 20(13)2021.PubMed/NCBI View Article : Google Scholar | |
Barrett SP and Salzman J: Circular RNAs: Analysis, expression and potential functions. Development. 143:1838–1847. 2016.PubMed/NCBI View Article : Google Scholar | |
Gong W, Xu J, Wang Y, Min Q, Chen X, Zhang W, Chen J and Zhan Q: Nuclear genome-derived circular RNA circPUM1 localizes in mitochondria and regulates oxidative phosphorylation in esophageal squamous cell carcinoma. Signal Transduct Target Ther. 7(40)2022.PubMed/NCBI View Article : Google Scholar | |
Deng M and Zou W: Noncoding RNAs: Novel targets for opioid tolerance. Curr Neuropharmacol. 21:1202–1213. 2023.PubMed/NCBI View Article : Google Scholar | |
Correction to: Preeclampsia: Pathophysiology, challenges, and perspectives. Circ Res. 126(e8)2020. | |
Magee LA, Nicolaides KH and von Dadelszen P: Preeclampsia. N Engl J Med. 386:1817–1832. 2022.PubMed/NCBI View Article : Google Scholar | |
Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet Gynecol. 135:e237–e260. 2020.PubMed/NCBI View Article : Google Scholar | |
Ma'ayeh M and Costantine MM: Prevention of preeclampsia. Semin Fetal Neonatal Med. 25(101123)2020.PubMed/NCBI View Article : Google Scholar | |
Liu J, Song G, Zhao G and Meng T: Epicardial adipose tissue thickness as a potential predictor of pre-eclampsia. Pregnancy Hypertens. 23:87–90. 2021.PubMed/NCBI View Article : Google Scholar | |
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 19(22)2020.PubMed/NCBI View Article : Google Scholar | |
Liu S, Xie X, Lei H, Zou B and Xie L: Identification of Key circRNAs/lncRNAs/miRNAs/mRNAs and pathways in preeclampsia using bioinformatics analysis. Med Sci Monit. 25:1679–1693. 2019.PubMed/NCBI View Article : Google Scholar | |
Gong S, Gaccioli F, Dopierala J, Sovio U, Cook E, Volders PJ, Martens L, Kirk PDW, Richardson S, Smith GCS and Charnock-Jones DS: The RNA landscape of the human placenta in health and disease. Nat Commun. 12(2639)2021.PubMed/NCBI View Article : Google Scholar | |
Sun N, Qin S, Zhang L and Liu S: Roles of noncoding RNAs in preeclampsia. Reprod Biol Endocrinol. 19(100)2021.PubMed/NCBI View Article : Google Scholar | |
Deng J, Zhao HJ, Zhong Y, Hu C, Meng J, Wang C, Lan X, Wang X, Chen ZJ, Yan J, et al: H3K27me3-modulated Hofbauer cell BMP2 signalling enhancement compensates for shallow trophoblast invasion in preeclampsia. EBioMedicine. 93(104664)2023.PubMed/NCBI View Article : Google Scholar | |
Saleem S, McClure EM, Goudar SS, Patel A, Esamai F, Garces A, Chomba E, Althabe F, Moore J, Kodkany B, et al: A prospective study of maternal, fetal and neonatal deaths in low- and middle-income countries. Bull World Health Organ. 92:605–612. 2014.PubMed/NCBI View Article : Google Scholar | |
Shao Y, Tao X, Lu R, Zhang H, Ge J, Xiao B, Ye G and Guo J: Hsa_circ_0065149 is an indicator for early gastric cancer screening and prognosis prediction. Pathol Oncol Res. 26:1475–1482. 2020.PubMed/NCBI View Article : Google Scholar | |
Hu X, Ao J, Li X, Zhang H, Wu J and Cheng W: Competing endogenous RNA expression profiling in pre-eclampsia identifies hsa_circ_0036877 as a potential novel blood biomarker for early pre-eclampsia. Clin Epigenetics. 10(48)2018.PubMed/NCBI View Article : Google Scholar | |
Jiang M, Lash GE, Zhao X, Long Y, Guo C and Yang H: CircRNA-0004904, CircRNA-0001855, and PAPP-A: Potential novel biomarkers for the prediction of preeclampsia. Cell Physiol Biochem. 46:2576–2586. 2018.PubMed/NCBI View Article : Google Scholar | |
Nakashima A, Cheng SB, Kusabiraki T, Motomura K, Aoki A, Ushijima A, Ono Y, Tsuda S, Shima T, Yoshino O, et al: Endoplasmic reticulum stress disrupts lysosomal homeostasis and induces blockade of autophagic flux in human trophoblasts. Sci Rep. 9(11466)2019.PubMed/NCBI View Article : Google Scholar | |
Chappell LC, Cluver CA, Kingdom J and Tong S: Pre-eclampsia. Lancet. 398:341–354. 2021.PubMed/NCBI View Article : Google Scholar | |
Velicky P, Windsperger K, Petroczi K, Pils S, Reiter B, Weiss T, Vondra S, Ristl R, Dekan S, Fiala C, et al: Pregnancy-associated diamine oxidase originates from extravillous trophoblasts and is decreased in early-onset preeclampsia. Sci Rep. 8(6342)2018.PubMed/NCBI View Article : Google Scholar | |
Bos M, Baelde HJ, Bruijn JA, Bloemenkamp KW, van der Hoorn MP and Turner RJ: Loss of placental thrombomodulin in oocyte donation pregnancies. Fertil Steril. 107:119–129.e5. 2017.PubMed/NCBI View Article : Google Scholar | |
Ramsay JE, Ferrell WR, Crawford L, Wallace AM, Greer IA and Sattar N: Divergent metabolic and vascular phenotypes in pre-eclampsia and intrauterine growth restriction: Relevance of adiposity. J Hypertens. 22:2177–2183. 2004.PubMed/NCBI View Article : Google Scholar | |
Tong C, Feng X, Chen J, Qi X, Zhou L, Shi S, Kc K, Stanley JL, Baker PN and Zhang H: G protein-coupled receptor 30 regulates trophoblast invasion and its deficiency is associated with preeclampsia. J Hypertens. 34:710–718. 2016.PubMed/NCBI View Article : Google Scholar | |
Wu L, Song WY, Xie Y, Hu LL, Hou XM, Wang R, Gao Y, Zhang JN, Zhang L, Li WW, et al: miR-181a-5p suppresses invasion and migration of HTR-8/SVneo cells by directly targeting IGF2BP2. Cell Death Dis. 9(16)2018.PubMed/NCBI View Article : Google Scholar | |
Wang G, Zhang Z, Chen C, Zhang Y and Zhang C: Dysfunction of WNT4/WNT5A in deciduas: possible relevance to the pathogenesis of preeclampsia. J Hypertens. 34:719–727. 2016.PubMed/NCBI View Article : Google Scholar | |
Melchiorre K, Giorgione V and Thilaganathan B: The placenta and preeclampsia: Villain or victim? Am J Obstet Gynecol. 226 (2S):S954–S962. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhou W, Wang H, Yang Y, Guo F, Yu B and Su Z: Trophoblast cell subtypes and dysfunction in the placenta of individuals with preeclampsia revealed by single-cell RNA sequencing. Mol Cells. 45:317–328. 2022.PubMed/NCBI View Article : Google Scholar | |
Huang Z, Du G, Huang X, Han L, Han X, Xu B, Zhang Y, Yu M, Qin Y, Xia Y, et al: The enhancer RNA lnc-SLC4A1-1 epigenetically regulates unexplained recurrent pregnancy loss (URPL) by activating CXCL8 and NF-kB pathway. EBioMedicine. 38:162–170. 2018.PubMed/NCBI View Article : Google Scholar | |
Jiao S, Wang SY and Huang Y: LncRNA PRNCR1 promoted the progression of eclampsia by regulating the MAPK signal pathway. Eur Rev Med Pharmacol Sci. 22:3635–3642. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang XQ, Li Y, Su X, Zhang L, Liu CM, Liu H, Ma X and Xia H: Haplotype-based association of two SNPs in miR-323b with unexplained recurrent spontaneous abortion in a Chinese Han population. J Cell Physiol. 233:6001–6017. 2018.PubMed/NCBI View Article : Google Scholar | |
Cheng D, Jiang S, Chen J, Li J, Ao L and Zhang Y: Upregulated long noncoding RNA Linc00261 in pre-eclampsia and its effect on trophoblast invasion and migration via regulating miR-558/TIMP4 signaling pathway. J Cell Biochem. 120:13243–13253. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang X and Meng T: Long Noncoding RNA in Preeclampsia: transcriptional noise or innovative indicators? Biomed Res Int. 2019(5437621)2019.PubMed/NCBI View Article : Google Scholar | |
Zhou J, Wan J, Shu XE, Mao Y, Liu XM, Yuan X, Zhang X, Hess ME, Brüning JC and Qian SB: N(6)-Methyladenosine Guides mRNA alternative translation during integrated stress response. Mol Cell. 69:636–647.e7. 2018.PubMed/NCBI View Article : Google Scholar | |
Bai Y, Rao H, Chen W, Luo X, Tong C and Qi H: Profiles of circular RNAs in human placenta and their potential roles related to preeclampsia. Biol Reprod. 98:705–712. 2018.PubMed/NCBI View Article : Google Scholar | |
Han B, Chao J and Yao H: Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther. 187:31–44. 2018.PubMed/NCBI View Article : Google Scholar | |
Ou Y, Liu M, Zhu L, Deng K, Chen M, Chen H and Zhang J: The expression profile of circRNA and its potential regulatory targets in the placentas of severe pre-eclampsia. Taiwan J Obstet Gynecol. 58:769–777. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Yang H, Zhang Y, Shi J, Chen R and Xiao X: CircSFXN1 regulates the behaviour of trophoblasts and likely mediates preeclampsia. Placenta. 101:115–123. 2020.PubMed/NCBI View Article : Google Scholar | |
Deng N, Lei D, Huang J, Yang Z, Fan C and Wang S: Circular RNA expression profiling identifies hsa_circ_0011460 as a novel molecule in severe preeclampsia. Pregnancy Hypertens. 17:216–225. 2019.PubMed/NCBI View Article : Google Scholar | |
Knöfler M and Pollheimer J: Human placental trophoblast invasion and differentiation: A particular focus on Wnt signaling. Front Genet. 4(190)2013.PubMed/NCBI View Article : Google Scholar | |
Shu C, Xu P, Han J, Han S and He J: Upregulation of circRNA hsa_circ_0008726 in pre-eclampsia inhibits trophoblast migration, invasion, and EMT by regulating miR-345-3p/RYBP Axis. Reprod Sci. 29:2829–2841. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhang S and Guo G: Circ_FURIN promotes trophoblast cell proliferation, migration and invasion in preeclampsia by regulating miR-34a-5p and TFAP2A. Hypertens Res. 45:1334–1344. 2022.PubMed/NCBI View Article : Google Scholar | |
Ou Y, Zhu L, Wei X, Bai S, Chen M, Chen H and Zhang J: Circular RNA circ_0111277 attenuates human trophoblast cell invasion and migration by regulating miR-494/HTRA1/Notch-1 signal pathway in pre-eclampsia. Cell Death Dis. 11(479)2020.PubMed/NCBI View Article : Google Scholar | |
Sonderegger S, Husslein H, Leisser C and Knofler M: Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta. 28 (Suppl A):S97–S102. 2007.PubMed/NCBI View Article : Google Scholar | |
Li X, Yu T, Zhai M, Wu Y, Zhao B, Duan C, Cheng H, Li H, Wei Z, Yang Y and Yu Z: Maternal cadmium exposure impairs placental angiogenesis in preeclampsia through disturbing thyroid hormone receptor signaling. Ecotoxicol Environ Saf. 244(114055)2022.PubMed/NCBI View Article : Google Scholar | |
Lu X, An L, Fan G, Zang L, Huang W, Li J, Liu J, Ge W, Huang Y, Xu J, et al: EGFR signaling promotes nuclear translocation of plasma membrane protein TSPAN8 to enhance tumor progression via STAT3-mediated transcription. Cell Res. 32:359–374. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhou RM, Shi LJ, Shan K, Sun YN, Wang SS, Zhang SJ, Li XM, Jiang Q, Yan B and Zhao C: Circular RNA-ZBTB44 regulates the development of choroidal neovascularization. Theranostics. 10:3293–3307. 2020.PubMed/NCBI View Article : Google Scholar | |
Guan S, Li L, Chen WS, Jiang WY, Ding Y, Zhao LL, Shi YF, Wang J, Gui Q, Xu CC, et al: Circular RNA WHSC1 exerts oncogenic properties by regulating miR-7/TAB2 in lung cancer. J Cell Mol Med. 25:9784–9795. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhao G, Yuan H, Li Q, Zhang J, Guo Y, Feng T, Gu R, Ou D, Li S, Li K and Lin P: DDX39B drives colorectal cancer progression by promoting the stability and nuclear translocation of PKM2. Signal Transduct Target Ther. 7(275)2022.PubMed/NCBI View Article : Google Scholar | |
Gai S, Sun L, Wang H and Yang P: Circular RNA hsa_circ_0007121 regulates proliferation, migration, invasion, and epithelial-mesenchymal transition of trophoblast cells by miR-182-5p/PGF axis in preeclampsia. Open Med (Wars). 15:1061–1071. 2020.PubMed/NCBI View Article : Google Scholar | |
Lin Z, Tang X, Wan J, Zhang X, Liu C and Liu T: Functions and mechanisms of circular RNAs in regulating stem cell differentiation. RNA Biol. 18:2136–2149. 2021.PubMed/NCBI View Article : Google Scholar | |
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7(3)2022.PubMed/NCBI View Article : Google Scholar | |
Du L, Kuang L, He F, Tang W, Sun W and Chen D: Mesenchymal-to-epithelial transition in the placental tissues of patients with preeclampsia. Hypertens Res. 40:67–72. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang F, Chen S, Wang J, Wang Y, Ruan F, Shu H, Zhu L and Man D: First trimester serum PAPP-A is associated with placenta accreta: A retrospective study. Arch Gynecol Obstet. 303:645–652. 2021.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Liu L, Wang J and Gao Y: Hsa_circ_0015382 is involved in the pathogenesis of preeclampsia by mediating THBS2 expression. Am J Reprod Immunol. 90(e13760)2023.PubMed/NCBI View Article : Google Scholar | |
Hu D, Zhang P and Chen M: Database resources for functional circular RNAs. Methods Mol Biol. 2284:457–466. 2021.PubMed/NCBI View Article : Google Scholar | |
Tan J, Zhong Z, Xu W and Zhang N: Overexpressed Hsa_circ_0001326 contributes to the decreased cell viability in SWAN71 Cells by Regulating MiR-186-5p/p27 Kip1 Axis. Biol Pharm Bull. 44:507–514. 2021.PubMed/NCBI View Article : Google Scholar | |
Qian Y, Lu Y, Rui C, Qian Y, Cai M and Jia R: Potential significance of circular RNA in human placental tissue for patients with preeclampsia. Cell Physiol Biochem. 39:1380–1390. 2016.PubMed/NCBI View Article : Google Scholar | |
Chen DB and Wang W: Human placental microRNAs and preeclampsia. Biol Reprod. 88(130)2013.PubMed/NCBI View Article : Google Scholar | |
Wang W, Feng L, Zhang H, Hachy S, Satohisa S, Laurent LC, Parast M, Zheng J and Chen DB: Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab. 97:E1051–E1059. 2012.PubMed/NCBI View Article : Google Scholar | |
Salzman J, Gawad C, Wang PL, Lacayo N and Brown PO: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 7(e30733)2012.PubMed/NCBI View Article : Google Scholar | |
Kifle MM, Dahal P, Vatish M, Cerdeira AS and Ohuma EO: The prognostic utility of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PIGF) biomarkers for predicting preeclampsia: A secondary analysis of data from the INSPIRE trial. BMC Pregnancy Childbirth. 22(520)2022.PubMed/NCBI View Article : Google Scholar | |
Semczuk-Sikora A, Krzyzanowski A, Kwiatek M and Semczuk M: Maternal serum concentration of placental growth factor (PIGF) and endothelial growth factor (VEGF) in pregnancies complicated by preeclampsia. Ginekol Pol. 78:873–876. 2007.PubMed/NCBI(In Polish). | |
Sezer SD, Kucuk M, Doger FK, Yuksel H, Odabasi AR, Turkmen MK, Cakmak BC, Omurlu IK and Kinas MG: VEGF, PIGF and HIF-1alpha in placentas of early- and late-onset pre-eclamptic patients. Gynecol Endocrinol. 29:797–800. 2013.PubMed/NCBI View Article : Google Scholar | |
Li J, Sun D, Pu W, Wang J and Peng Y: Circular RNAs in Cancer: Biogenesis, function, and clinical significance. Trends Cancer. 6:319–336. 2020.PubMed/NCBI View Article : Google Scholar | |
Li X, Yang R, Xu Y and Zhang Y: Circ_0001438 participates in the pathogenesis of preeclampsia via the circ_0001438/miR-942/NLRP3 regulatory network. Placenta. 104:40–50. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu M, Dai X, Zhou H, Zhu J, Zhang H and Jiang Y: Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer. 19(101)2020.PubMed/NCBI View Article : Google Scholar | |
Zhu H, Niu X, Li Q, Zhao Y, Chen X and Sun H: Circ_0085296 suppresses trophoblast cell proliferation, invasion, and migration via modulating miR-144/E-cadherin axis. Placenta. 97:18–25. 2020.PubMed/NCBI View Article : Google Scholar | |
Hansen TB, Kjems J and Damgaard CK: Circular RNA and miR-7 in cancer. Cancer Res. 73:5609–5612. 2013.PubMed/NCBI View Article : Google Scholar | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013.PubMed/NCBI View Article : Google Scholar | |
Karreth FA and Pandolfi PP: ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov. 3:1113–1121. 2013.PubMed/NCBI View Article : Google Scholar | |
Griggs LA, Hassan NT, Malik RS, Griffin BP, Martinez BA, Elmore LW and Lemmon CA: Fibronectin fibrils regulate TGF-β1-induced Epithelial-Mesenchymal Transition. Matrix Biol. 60-61:157–175. 2017.PubMed/NCBI View Article : Google Scholar | |
Panda AC: Circular RNAs Act as miRNA Sponges. Adv Exp Med Biol. 1087:67–79. 2018.PubMed/NCBI View Article : Google Scholar | |
Liu Q, Zhang X, Hu X, Dai L, Fu X, Zhang J and Ao Y: Circular RNA Related to the Chondrocyte ECM Regulates MMP13 Expression by Functioning as a MiR-136 ‘Sponge’ in human cartilage degradation. Sci Rep. 6(22572)2016.PubMed/NCBI View Article : Google Scholar | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013.PubMed/NCBI View Article : Google Scholar | |
Xu H, Guo S, Li W and Yu P: The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep. 5(12453)2015.PubMed/NCBI View Article : Google Scholar | |
Zheng XB, Zhang M and Xu MQ: Detection and characterization of ciRS-7: A potential promoter of the development of cancer. Neoplasma. 64:321–328. 2017.PubMed/NCBI View Article : Google Scholar | |
Wu J, Qi X, Liu L, Hu X, Liu J, Yang J, Yang J, Lu L, Zhang Z, Ma S, et al: Emerging Epigenetic Regulation of Circular RNAs in Human Cancer. Mol Ther Nucleic Acids. 16:589–596. 2019.PubMed/NCBI View Article : Google Scholar | |
Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX and Ji XP: The Circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One. 11(e0151753)2016.PubMed/NCBI View Article : Google Scholar | |
Yu L, Gong X, Sun L, Zhou Q, Lu B and Zhu L: The Circular RNA Cdr1as Act as an oncogene in hepatocellular carcinoma through targeting miR-7 Expression. PLoS One. 11(e0158347)2016.PubMed/NCBI View Article : Google Scholar | |
Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, Yu H and Kong D: Overexpression of Circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on Gastric Cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 119:440–446. 2018.PubMed/NCBI View Article : Google Scholar | |
Fan Y, Wang J, Jin W, Sun Y, Xu Y, Wang Y, Liang X and Su D: CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 20(25)2021.PubMed/NCBI View Article : Google Scholar | |
Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, et al: Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 7(12429)2016.PubMed/NCBI View Article : Google Scholar | |
Li H, Jin X, Liu B, Zhang P, Chen W and Li Q: CircRNA CBL.11 suppresses cell proliferation by sponging miR-6778-5p in colorectal cancer. BMC Cancer. 19(826)2019.PubMed/NCBI View Article : Google Scholar | |
Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL and Gorospe M: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14:361–369. 2017.PubMed/NCBI View Article : Google Scholar | |
Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, Ma J, Li X, Zeng Y, Yang Z, et al: A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 24:1609–1620. 2017.PubMed/NCBI View Article : Google Scholar | |
Ou R, Lv J, Zhang Q, Lin F, Zhu L, Huang F, Li X, Li T, Zhao L, Ren Y and Xu Y: circAMOTL1 Motivates AMOTL1 expression to facilitate cervical cancer growth. Mol Ther Nucleic Acids. 19:50–60. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen CY and Sarnow P: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 268:415–417. 1995.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Yang L and Chen LL: Life without A tail: New formats of long noncoding RNAs. Int J Biochem Cell Biol. 54:338–349. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang Y and Wang Z: Efficient backsplicing produces translatable circular mRNAs. RNA. 21:172–179. 2015.PubMed/NCBI View Article : Google Scholar | |
Jang SK, Kräusslich HG, Nicklin MJ, Duke GM, Palmenberg AC and Wimmer E: A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 62:2636–2643. 1988.PubMed/NCBI View Article : Google Scholar | |
Godet AC, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B and Prats AC: IRES Trans-Acting Factors, Key Actors of the Stress Response. Int J Mol Sci. 20(924)2019.PubMed/NCBI View Article : Google Scholar | |
Macejak DG and Sarnow P: Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature. 353:90–94. 1991.PubMed/NCBI View Article : Google Scholar | |
Zhang M and Xin Y: Circular RNAs: A new frontier for cancer diagnosis and therapy. J Hematol Oncol. 11(21)2018.PubMed/NCBI View Article : Google Scholar | |
Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, Yang J, Fan J, Liu L and Qin W: Hsa_circ_0001649: A circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark. 16:161–169. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Yang H, Zhang Y, Shi J and Chen R: circCRAMP1L is a novel biomarker of preeclampsia risk and may play a role in preeclampsia pathogenesis via regulation of the MSP/RON axis in trophoblasts. BMC Pregnancy Childbirth. 20(652)2020.PubMed/NCBI View Article : Google Scholar | |
Cao Y, Liu B, Cai L, Li Y, Huang Y, Zhou Y, Sun X, Yang W and Sun T: G9a promotes immune suppression by targeting the Fbxw7/Notch pathway in glioma stem cells. CNS Neurosci Ther. 29:2508–2521. 2023.PubMed/NCBI View Article : Google Scholar | |
Yang Z, Hu N, Wang W, Hu W, Zhou S, Shi J, Li M, Jing Z, Chen C, Zhang X, et al: Loss of FBXW7 Correlates with Increased IDH1 expression in glioma and enhances IDH1-Mutant cancer cell sensitivity to radiation. Cancer Res. 82:497–509. 2022.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel Role of FBXW7 Circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018.PubMed/NCBI View Article : Google Scholar | |
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X and Tang H: circFBXW7 Inhibits malignant progression by sponging miR-197-3p and Encoding a 185-aa protein in triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98. 2019.PubMed/NCBI View Article : Google Scholar | |
Liang WC, Wong CW, Liang PP, Shi M, Cao Y, Rao ST, Tsui SK, Waye MM, Zhang Q, Fu WM and Zhang JF: Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 20(84)2019.PubMed/NCBI View Article : Google Scholar | |
Nejak-Bowen KN and Monga SP: Beta-catenin signaling, liver regeneration and hepatocellular cancer: Sorting the good from the bad. Semin Cancer Biol. 21:44–58. 2011.PubMed/NCBI View Article : Google Scholar | |
Lu Y, Li Z, Lin C, Zhang J and Shen Z: Translation role of circRNAs in cancers. J Clin Lab Anal. 35(e23866)2021.PubMed/NCBI View Article : Google Scholar | |
Glažar P, Papavasileiou P and Rajewsky N: circBase: A database for circular RNAs. RNA. 20:1666–1670. 2014.PubMed/NCBI View Article : Google Scholar | |
He S and Tang S: WNT/β-catenin signaling in the development of liver cancers. Biomed Pharmacother. 132(110851)2020.PubMed/NCBI View Article : Google Scholar | |
Zhong J, Wu X, Gao Y, Chen J, Zhang M, Zhou H, Yang J, Xiao F, Yang X, Huang N, et al: Circular RNA encoded MET variant promotes glioblastoma tumorigenesis. Nat Commun. 14(4467)2023.PubMed/NCBI View Article : Google Scholar | |
Zeng K, Peng J, Xing Y, Zhang L, Zeng P, Li W, Zhang W, Pan Z, Zhou C and Lin J: A positive feedback circuit driven by m(6)A-modified circular RNA facilitates colorectal cancer liver metastasis. Mol Cancer. 22(202)2023.PubMed/NCBI View Article : Google Scholar | |
Bokar JA, Shambaugh ME, Polayes D, Matera AG and Rottman FM: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 3:1233–1247. 1997.PubMed/NCBI | |
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014.PubMed/NCBI View Article : Google Scholar | |
Agarwala SD, Blitzblau HG, Hochwagen A and Fink GR: RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet. 8(e1002732)2012.PubMed/NCBI View Article : Google Scholar | |
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 537:369–373. 2016.PubMed/NCBI View Article : Google Scholar | |
Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 Regulates Nuclear RNA m(6)A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Mol Cell. 69:1028–1038.e6. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang Z and Wang XJ: N(6)-Methyladenosine mRNA Modification: From modification site selectivity to neurological functions. Acc Chem Res. 56:2992–2999. 2023.PubMed/NCBI View Article : Google Scholar | |
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5' UTR m(6)A Promotes Cap-Independent Translation. Cell. 163:999–1010. 2015.PubMed/NCBI View Article : Google Scholar | |
Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y, et al: Circular RNAs in Cancer: Emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer. 18(90)2019.PubMed/NCBI View Article : Google Scholar | |
Harland R and Misher L: Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA. Development. 102:837–852. 1988.PubMed/NCBI View Article : Google Scholar | |
Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, et al: A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 37:1805–1814. 2018.PubMed/NCBI View Article : Google Scholar | |
Fu Y, Wang Z, Luo C, Wang Y, Wang Y, Zhong X and Zheng H: Downregulation of CXXC Finger Protein 4 Leads to a Tamoxifen-resistant phenotype in breast cancer cells through activation of the Wnt/beta-catenin Pathway. Transl Oncol. 13:423–440. 2020.PubMed/NCBI View Article : Google Scholar | |
Yang Q, Wu J, Zhao J, Xu T, Zhao Z, Song X and Han P: Circular RNA expression profiles during the differentiation of mouse neural stem cells. BMC Syst Biol. 12 (Suppl 8)(128)2018.PubMed/NCBI View Article : Google Scholar | |
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al: The landscape of circular RNA in Cancer. Cell. 176:869–881.e13. 2019.PubMed/NCBI View Article : Google Scholar | |
Tan H, Gan L, Fan X, Liu L and Liu S: Diagnostic value of circular RNAs as effective biomarkers for cancer: A systematic review and meta-analysis. Onco Targets Ther. 12:2623–2633. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M and Xu S: circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis. 11(32)2020.PubMed/NCBI View Article : Google Scholar | |
Cui L, Shi M, Meng X, Qian J and Wang S: Identification of m6A modification regulated by dysregulated circRNAs in decidua of recurrent pregnancy loss. Curr Issues Mol Biol. 45:8767–8779. 2023.PubMed/NCBI View Article : Google Scholar | |
Inoue T, Watanabe T and Tanaka Y: Hepatitis B core-related antigen: A novel and promising surrogate biomarker to guide anti-hepatitis B virus therapy. Clin Mol Hepatol. 29:851–868. 2023.PubMed/NCBI View Article : Google Scholar | |
Shafabakhsh R, Mirhosseini N, Chaichian S, Moazzami B, Mahdizadeh Z and Asemi Z: Could circRNA be a new biomarker for pre-eclampsia? Mol Reprod Dev. 86:1773–1780. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Yang H, Zhang Y, Shi J and Long Y: A Novel Circular RNA CircBRAP may be used as an early predictor of preeclampsia and its potential mechanism. Reprod Sci. 29:2565–2579. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Qiu S, Luo P, Zhou H, Jing W, Liang C and Tu J: Down-regulation of hsa_circ_0001649 in hepatocellular carcinoma predicts a poor prognosis. Cancer Biomark. 22:135–142. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhou W, Wang H, Wu X, Long W, Zheng F, Kong J and Yu B: The profile analysis of circular RNAs in human placenta of preeclampsia. Exp Biol Med (Maywood). 243:1109–1117. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang YG, Yang HL, Long Y and Li WL: Circular RNA in blood corpuscles combined with plasma protein factor for early prediction of pre-eclampsia. BJOG. 123:2113–2118. 2016.PubMed/NCBI View Article : Google Scholar | |
Chen CK, Cheng R, Demeter J, Chen J, Weingarten-Gabbay S, Jiang L, Snyder MP, Weissman JS, Segal E, Jackson PK and Chang HY: Structured elements drive extensive circular RNA translation. Mol Cell. 81:4300–4318.e13. 2021.PubMed/NCBI View Article : Google Scholar | |
Li Y, Shen Z, Jiang X, Wang Y, Yang Z, Mao Y, Wu Z, Li G and Chen H: Mouse mesenchymal stem cell-derived exosomal miR-466f-3p reverses EMT process through inhibiting AKT/GSK3β pathway via c-MET in radiation-induced lung injury. J Exp Clin Cancer Res. 41(128)2022.PubMed/NCBI View Article : Google Scholar | |
Dai XM, Zhang YH, Lin XH, Huang XX, Zhang Y, Xue CR, Chen WN, Ye JX, Lin XJ and Lin X: SIK2 represses AKT/GSK3β/β-catenin signaling and suppresses gastric cancer by inhibiting autophagic degradation of protein phosphatases. Mol Oncol. 15:228–245. 2021.PubMed/NCBI View Article : Google Scholar | |
Yang B, Li L, Tong G, Zeng Z, Tan J, Su Z, Liu Z, Lin J, Gao W, Chen J, et al: Circular RNA circ_001422 promotes the progression and metastasis of osteosarcoma via the miR-195-5p/FGF2/PI3K/Akt axis. J Exp Clin Cancer Res. 40(235)2021.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Qi X, Donnelly L, Elghobashi-Meinhardt N, Long T, Zhou RW, Sun Y, Wang B and Li X: Mechanisms and inhibition of Porcupine-mediated Wnt acylation. Nature. 607:816–822. 2022.PubMed/NCBI View Article : Google Scholar | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 Is a Circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017.PubMed/NCBI View Article : Google Scholar | |
Yang HL, Zhang HZ, Meng FR, Han SY and Zhang M: Differential expression of microRNA-411 and 376c is associated with hypertension in pregnancy. Braz J Med Biol Res. 52(e7546)2019.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Sun A, Yan A, Yao J, Huang H, Gao Z, Han T, Gu J, Li N, Wu H and Li K: Circular RNA MTCL1 promotes advanced laryngeal squamous cell carcinoma progression by inhibiting C1QBP ubiquitin degradation and mediating beta-catenin activation. Mol Cancer. 21(92)2022.PubMed/NCBI View Article : Google Scholar | |
Wang J, Hu K, Cai X, Yang B, He Q, Wang J and Weng Q: Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B. 12:18–32. 2022.PubMed/NCBI View Article : Google Scholar | |
Liu B, Zhao N, Zhou Y, Lu Y, Chen W, Huang Z, Wang D, Xu Y, Wai Ping Yam J and Cui Y: Circular RNA circ_ABCB10 in cancer. Clin Chim Acta. 518:93–100. 2021.PubMed/NCBI View Article : Google Scholar | |
Barzegar Behrooz A, Talaie Z, Jusheghani F, Los MJ, Klonisch T and Ghavami S: Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. Int J Mol Sci. 23(1353)2022.PubMed/NCBI View Article : Google Scholar | |
Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan L, Andrews R, Zhong W, Zhang X, Song E and Gong C: Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis. 10(55)2019.PubMed/NCBI View Article : Google Scholar | |
Li X, Li C, Liu Z, Ni W, Yao R, Xu Y, Quan R, Zhang M, Li H, Liu L and Hu S: Circular RNA circ-FoxO3 inhibits myoblast cells differentiation. Cells. 8(616)2019.PubMed/NCBI View Article : Google Scholar |