Fine particulate matter‑induced cardiac developmental toxicity (Review)
- Authors:
- Xiangjiang Meng
- Weiyuan Du
- Zongli Sun
-
Affiliations: Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China - Published online on: October 29, 2024 https://doi.org/10.3892/etm.2024.12756
- Article Number: 6
-
Copyright: © Meng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Dominici F, Greenstone M and Sunstein CR: Science and regulation. Particulate matter matters. Science. 344:257–259. 2014.PubMed/NCBI View Article : Google Scholar | |
Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M, Lim CC, Shanley R, Park Y and Hayes RB: Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ Health Perspect. 124:484–490. 2016.PubMed/NCBI View Article : Google Scholar | |
Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J and Dong S: Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep. 7(9392)2017.PubMed/NCBI View Article : Google Scholar | |
Long JF, Waldman WJ, Kristovich R, Williams M, Knight D and Dutta PK: Comparison of ultrastructural cytotoxic effects of carbon and carbon/iron particulates on human monocyte-derived macrophages. Environ Health Perspect. 113:170–174. 2005.PubMed/NCBI View Article : Google Scholar | |
Samek L, Furman L, Mikrut M, Regiel-Futyra A, Macyk W, Stochel G and van Eldik R: Chemical composition of submicron and fine particulate matter collected in Krakow, Poland. Consequences for the APARIC project. Chemosphere. 187:430–439. 2017.PubMed/NCBI View Article : Google Scholar | |
Mesquita SR, van Drooge BL, Reche C, Guimarães L, Grimalt JO, Barata C and Piña B: Toxic assessment of urban atmospheric particle-bound PAHs: Relevance of composition and particle size in Barcelona (Spain). Environ Pollut. 184:555–562. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang L, Luo D, Liu X, Zhu J, Wang F, Li B and Li L: Effects of PM2.5 exposure on reproductive system and its mechanisms. Chemosphere. 264(128436)2021.PubMed/NCBI View Article : Google Scholar | |
Hoffman JIE, Kaplan S and Liberthson RR: Prevalence of congenital heart disease. Am Heart J. 147:425–439. 2004.PubMed/NCBI View Article : Google Scholar | |
Olson EN: Gene regulatory networks in the evolution and development of the heart. Science. 313:1922–1927. 2006.PubMed/NCBI View Article : Google Scholar | |
Li M, Li J, Wei C, Lu Q, Tang X, Erickson SW, MacLeod SL and Hobbs CA: A three-way interaction among maternal and fetal variants contributing to congenital heart defects. Ann Hum Genet. 80:20–31. 2016.PubMed/NCBI View Article : Google Scholar | |
Hu CY, Huang K, Fang Y, Yang XJ, Ding K, Jiang W, Hua XG, Huang DY, Jiang ZX and Zhang XJ: Maternal air pollution exposure and congenital heart defects in offspring: A systematic review and meta-analysis. Chemosphere. 253(126668)2020.PubMed/NCBI View Article : Google Scholar | |
Huang CC, Chen BY, Pan SC, Ho YL and Guo YL: Prenatal exposure to PM2.5 and congenital heart diseases in Taiwan. Sci Total Environ. 655:880–886. 2019.PubMed/NCBI View Article : Google Scholar | |
Li D, Xu W, Qiu Y, Pan F, Lou H, Li J, Jin Y, Wu T, Pan L, An J, et al: Maternal air pollution exposure and neonatal congenital heart disease: A multi-city cross-sectional study in eastern China. Int J Hyg Environ Health. 240(113898)2022.PubMed/NCBI View Article : Google Scholar | |
Zhang Q, Sun S, Sui X, Ding L, Yang M, Li C, Zhang C, Zhang X, Hao J, Xu Y, et al: Associations between weekly air pollution exposure and congenital heart disease. Sci Total Environ. 757(143821)2021.PubMed/NCBI View Article : Google Scholar | |
Jiang Q, Zhang C, Chen S, Shi L, Li DC, Lv N, Cui L, Chen Y and Zheng Y: Particulate matter 2.5 induced developmental cardiotoxicity in chicken embryo and hatchling. Front Pharmacol. 11(841)2020.PubMed/NCBI View Article : Google Scholar | |
Wang H, Peng X, Cao F, Wang Y, Shi H, Lin S, Zhong W and Sun J: Cardiotoxicity and mechanism of particulate matter 2.5 (PM2.5) exposure in offspring rats during pregnancy. Med Sci Monit. 23:3890–3896. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Yao Y, Chen Y, Yue C, Chen J, Tong J, Jiang Y and Chen T: Crosstalk between AhR and wnt/β-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Toxicology. 355-356:31–38. 2016.PubMed/NCBI View Article : Google Scholar | |
Lage K, Greenway SC, Rosenfeld JA, Wakimoto H, Gorham JM, Segrè AV, Roberts AE, Smoot LB, Pu WT, Pereira AC, et al: Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc Natl Acad Sci USA. 109:14035–14040. 2012.PubMed/NCBI View Article : Google Scholar | |
Yan R, Ma D, Liu Y, Wang R, Fan L, Yan Q, Chen C, Wang W, Ren Z, Ku T, et al: Developmental toxicity of fine particulate matter: Multifaceted exploration from epidemiological and laboratory perspectives. Toxics. 12(274)2024.PubMed/NCBI View Article : Google Scholar | |
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y and Wang X: The pathophysiological and molecular mechanisms of atmospheric PM2.5 affecting cardiovascular health: A review. Ecotoxicol Environ Saf. 249(114444)2023.PubMed/NCBI View Article : Google Scholar | |
Liang C, Ding R, Sun Q, Liu S, Sun Z and Duan J: An overview of adverse outcome pathway links between PM2.5 exposure and cardiac developmental toxicity. Environ Health. 2:105–113. 2024.PubMed/NCBI View Article : Google Scholar | |
Agay-Shay K, Friger M, Linn S, Peled A, Amitai Y and Peretz C: Air pollution and congenital heart defects. Environ Res. 124:28–34. 2013.PubMed/NCBI View Article : Google Scholar | |
Girguis MS, Strickland MJ, Hu X, Liu Y, Bartell SM and Vieira VM: Maternal exposure to traffic-related air pollution and birth defects in Massachusetts. Environ Res. 146:1–9. 2016.PubMed/NCBI View Article : Google Scholar | |
Lavigne E, Lima I, Hatzopoulou M, Van Ryswyk K, Decou ML, Luo W, van Donkelaar A, Martin RV, Chen H, Stieb DM, et al: Spatial variations in ambient ultrafine particle concentrations and risk of congenital heart defects. Environ Int. 130(104953)2019.PubMed/NCBI View Article : Google Scholar | |
Schembari A, Nieuwenhuijsen MJ, Salvador J, de Nazelle A, Cirach M, Dadvand P, Beelen R, Hoek G, Basagaña X and Vrijheid M: Traffic-related air pollution and congenital anomalies in Barcelona. Environ Health Perspect. 122:317–323. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang B, Liang S, Zhao J, Qian Z, Bassig BA, Yang R, Zhang Y, Hu K, Xu S, Zheng T and Yang S: Maternal exposure to air pollutant PM2.5 and PM10 during pregnancy and risk of congenital heart defects. J Expo Sci Environ Epidemiol. 26:422–427. 2016.PubMed/NCBI View Article : Google Scholar | |
Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M, Warnes CA and Webb CL: American Heart Association Council on Cardiovascular Disease in the Young. Noninherited risk factors and congenital cardiovascular defects: Current knowledge: A scientific statement from the American heart association council on cardiovascular disease in the Young: Endorsed by the American academy of pediatrics. Circulation. 115:2995–3014. 2007.PubMed/NCBI View Article : Google Scholar | |
Lassi ZS, Imam AM, Dean SV and Bhutta ZA: Preconception care: Caffeine, smoking, alcohol, drugs and other environmental chemical/radiation exposure. Reprod Health. 11 (Suppl 3)(S6)2014.PubMed/NCBI View Article : Google Scholar | |
Chang YC, Lin YT, Jung CR, Chen KW and Hwang BF: Maternal exposure to fine particulate matter and congenital heart defects during preconception and pregnancy period: A cohort-based case-control study in the Taiwan maternal and child health database. Environ Res. 231(116154)2023.PubMed/NCBI View Article : Google Scholar | |
Wu X, Pan B, Liu L, Zhao W, Zhu J, Huang X and Tian J: In utero exposure to PM2.5 during gestation caused adult cardiac hypertrophy through histone acetylation modification. J Cell Biochem. 120:4375–4384. 2019.PubMed/NCBI View Article : Google Scholar | |
Watt AJ, Battle MA, Li J and Duncan SA: GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA. 101:12573–12578. 2004.PubMed/NCBI View Article : Google Scholar | |
Jiang SY, Xu M and Zhang YY: Role of GATA-4 in cardiac development and remodeling. Sheng Li Ke Xue Jin Zhan. 39:302–306. 2008.PubMed/NCBI(In Chinese). | |
Akazawa H and Komuro I: Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res. 92:1079–1088. 2003.PubMed/NCBI View Article : Google Scholar | |
Morimoto T, Hasegawa K, Wada H, Kakita T, Kaburagi S, Yanazume T and Sasayama S: Calcineurin-GATA4 pathway is involved in beta-adrenergic agonist-responsive endothelin-1 transcription in cardiac myocytes. J Biol Chem. 276:34983–34989. 2001.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Ruan Z, Wang X, Yang Y, Mason TG, Lin H and Tian L: Short-term and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis. Environ Pollut. 247:874–882. 2019.PubMed/NCBI View Article : Google Scholar | |
Sancini G, Farina F, Battaglia C, Cifola I, Mangano E, Mantecca P, Camatini M and Palestini P: Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5). PLoS One. 9(e109685)2014.PubMed/NCBI View Article : Google Scholar | |
Qin G, Xia J, Zhang Y, Guo L, Chen R and Sang N: Ambient fine particulate matter exposure induces reversible cardiac dysfunction and fibrosis in juvenile and older female mice. Part Fibre Toxicol. 15(27)2018.PubMed/NCBI View Article : Google Scholar | |
Qi Z, Song Y, Ding Q, Liao X, Li R, Liu G, Tsang S and Cai Z: Water soluble and insoluble components of PM2.5 and their functional cardiotoxicities on neonatal rat cardiomyocytes in vitro. Ecotoxicol Environ Saf. 168:378–387. 2019.PubMed/NCBI View Article : Google Scholar | |
Shaffer F and Ginsberg JP: An overview of heart rate variability metrics and norms. Front Public Health. 5(258)2017.PubMed/NCBI View Article : Google Scholar | |
Wagner JG, Kamal AS, Morishita M, Dvonch JT, Harkema JR and Rohr AC: PM2.5-induced cardiovascular dysregulation in rats is associated with elemental carbon and temperature-resolved carbon subfractions. Part Fibre Toxicol. 11(25)2014.PubMed/NCBI View Article : Google Scholar | |
Chen R, Qiao L, Li H, Zhao Y, Zhang Y, Xu W, Wang C, Wang H, Zhao Z, Xu X, et al: Fine particulate matter constituents, nitric oxide synthase DNA methylation and exhaled nitric oxide. Environ Sci Technol. 49:11859–11865. 2015.PubMed/NCBI View Article : Google Scholar | |
Tanwar V, Adelstein JM, Grimmer JA, Youtz DJ, Sugar BP and Wold LE: PM2.5 exposure in utero contributes to neonatal cardiac dysfunction in mice. Environ Pollut. 230:116–124. 2017.PubMed/NCBI View Article : Google Scholar | |
Grant AO: Cardiac ion channels. Circ Arrhythm Electrophysiol. 2:185–194. 2009.PubMed/NCBI View Article : Google Scholar | |
Park KH, Choi YJ, Min WK, Lee SH, Kim J, Jeong SH, Lee JH, Choi BM and Kim S: Particulate matter induces arrhythmia-like cardiotoxicity in zebrafish embryos by altering the expression levels of cardiac development- and ion channel-related genes. Ecotoxicol Environ Saf. 263(115201)2023.PubMed/NCBI View Article : Google Scholar | |
Gualtieri M, Longhin E, Mattioli M, Mantecca P, Tinaglia V, Mangano E, Proverbio MC, Bestetti G, Camatini M and Battaglia C: Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol Lett. 209:136–145. 2012.PubMed/NCBI View Article : Google Scholar | |
Kouassi KS, Billet S, Garçon G, Verdin A, Diouf A, Cazier F, Djaman J, Courcot D and Shirali P: Oxidative damage induced in A549 cells by physically and chemically characterized air particulate matter (PM2.5) collected in Abidjan, Côte d'Ivoire. J Appl Toxicol. 30:310–320. 2010.PubMed/NCBI View Article : Google Scholar | |
Briedé JJ, De Kok TMCM, Hogervorst JGF, Moonen EJC, Op Den Camp CLB and Kleinjanst JCS: Development and application of an electron spin resonance spectrometry method for the determination of oxygen free radical formation by particulate matter. Environ Sci Technol. 39:8420–8426. 2005.PubMed/NCBI View Article : Google Scholar | |
Gehling W, Khachatryan L and Dellinger B: Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5. Environ Sci Technol. 48:4266–4272. 2014.PubMed/NCBI View Article : Google Scholar | |
Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M and Gualtieri M: Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part Fibre Toxicol. 10(63)2013.PubMed/NCBI View Article : Google Scholar | |
Huang Q, Zhang J, Peng S, Tian M, Chen J and Shen H: Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549): A proteomic study. J Appl Toxicol. 34:675–687. 2014.PubMed/NCBI View Article : Google Scholar | |
Kannan S, Misra DP, Dvonch JT and Krishnakumar A: Exposures to airborne particulate matter and adverse perinatal outcomes: A biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect. 114:1636–1642. 2006.PubMed/NCBI View Article : Google Scholar | |
Feng S, Gao D, Liao F, Zhou F and Wang X: The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf. 128:67–74. 2016.PubMed/NCBI View Article : Google Scholar | |
Li SY, Sigmon VK, Babcock SA and Ren J: Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sci. 80:1051–1056. 2007.PubMed/NCBI View Article : Google Scholar | |
Moazzen H, Lu X, Ma NL, Velenosi TJ, Urquhart BL, Wisse LJ, Gittenberger-de Groot AC and Feng Q: N-Acetylcysteine prevents congenital heart defects induced by pregestational diabetes. Cardiovasc Diabetol. 13(46)2014.PubMed/NCBI View Article : Google Scholar | |
Ren F, Ji C, Huang Y, Aniagu S, Jiang Y and Chen T: AHR-mediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Sci Total Environ. 719(135097)2020.PubMed/NCBI View Article : Google Scholar | |
Wang L, He X, Szklarz GD, Bi Y, Rojanasakul Y and Ma Q: The aryl hydrocarbon receptor interacts with nuclear factor erythroid 2-related factor 2 to mediate induction of NAD(P)H:quinoneoxidoreductase 1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Biochem Biophys. 537:31–38. 2013.PubMed/NCBI View Article : Google Scholar | |
Rousseau ME, Sant KE, Borden LR, Franks DG, Hahn ME and Timme-Laragy AR: Regulation of Ahr signaling by Nrf2 during development: Effects of Nrf2a deficiency on PCB126 embryotoxicity in zebrafish (Danio rerio). Aquat Toxicol. 167:157–171. 2015.PubMed/NCBI View Article : Google Scholar | |
Dalton TP, Puga A and Shertzer HG: Induction of cellular oxidative stress by aryl hydrocarbon receptor activation. Chem Biol Interact. 141:77–95. 2002.PubMed/NCBI View Article : Google Scholar | |
Elbekai RH and El-Kadi AOS: The role of oxidative stress in the modulation of aryl hydrocarbon receptor-regulated genes by As3+, Cd2+, and Cr6+. Free Radic Biol Med. 39:1499–1511. 2005.PubMed/NCBI View Article : Google Scholar | |
Mohammadi-Bardbori A, Omidi M and Arabnezhad MR: Impact of CH223191-induced mitochondrial dysfunction on its Aryl hydrocarbon receptor agonistic and antagonistic activities. Chem Res Toxicol. 32:691–697. 2019.PubMed/NCBI View Article : Google Scholar | |
Kopf PG and Walker MK: 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases reactive oxygen species production in human endothelial cells via induction of cytochrome P4501A1. Toxicol Appl Pharmacol. 245:91–99. 2010.PubMed/NCBI View Article : Google Scholar | |
Zangar RC, Davydov DR and Verma S: Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol. 199:316–331. 2004.PubMed/NCBI View Article : Google Scholar | |
Zhou B, Wang X, Li F, Wang Y, Yang L, Zhen X and Tan W: Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes. Mol Med Rep. 16:174–180. 2017.PubMed/NCBI View Article : Google Scholar | |
Pei Y, Jiang R, Zou Y, Wang Y, Zhang S, Wang G, Zhao J and Song W: Effects of fine particulate matter (PM2.5) on systemic oxidative stress and cardiac function in ApoE(-/-) mice. Int J Environ Res Public Health. 13(484)2016.PubMed/NCBI View Article : Google Scholar | |
Yang JL, Lu JY, Zhang MS, Qin G and Li CP: Involvement of heme oxygenase in PM2.5-toxicity in human umbilical vein endothelial cells. Zhonghua Xin Xue Guan Bing Za Zhi. 41:955–961. 2013.PubMed/NCBI(In Chinese). | |
Medzhitov R: Origin and physiological roles of inflammation. Nature. 454:428–435. 2008.PubMed/NCBI View Article : Google Scholar | |
Zhao J, Gao Z, Tian Z, Xie Y, Xin F, Jiang R, Kan H and Song W: The biological effects of individual-level PM(2.5) exposure on systemic immunity and inflammatory response in traffic policemen. Occup Environ Med. 70:426–431. 2013.PubMed/NCBI View Article : Google Scholar | |
Bekki K, Ito T, Yoshida Y, He C, Arashidani K, He M, Sun G, Zeng Y, Sone H, Kunugita N and Ichinose T: PM2.5 collected in China causes inflammatory and oxidative stress responses in macrophages through the multiple pathways. Environ Toxicol Pharmacol. 45:362–369. 2016.PubMed/NCBI View Article : Google Scholar | |
Shi Q, Zhao L, Xu C, Zhang L and Zhao H: High molecular weight hyaluronan suppresses macrophage M1 polarization and enhances IL-10 production in PM2.5-induced lung inflammation. Molecules. 24(1766)2019.PubMed/NCBI View Article : Google Scholar | |
Chen W, Liu Y, Chen J, Song Y, You M and Yang G: Long-term co-exposure DBP and BaP causes imbalance in liver macrophages polarization via activation of notch signaling regulated by miR-34a-5p in rats. Chem Biol Interact. 359(109919)2022.PubMed/NCBI View Article : Google Scholar | |
You M, Song Y, Chen J, Liu Y, Chen W, Cen Y, Zhao X, Tao Z and Yang G: Combined exposure to benzo(a)pyrene and dibutyl phthalate aggravates pro-inflammatory macrophage polarization in spleen via pyroptosis involving cathepsin B. Sci Total Environ. 881(163460)2023.PubMed/NCBI View Article : Google Scholar | |
Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martinez L, Sánchez-Díaz M, Díaz-García E, Santiago DJ, Rubio-Ponce A, Li JL, Balachander A, Quintana JA, et al: A network of macrophages supports mitochondrial homeostasis in the heart. Cell. 183:94–109.e23. 2020.PubMed/NCBI View Article : Google Scholar | |
Ueland T, Gullestad L, Nymo SH, Yndestad A, Aukrust P and Askevold ET: Inflammatory cytokines as biomarkers in heart failure. Clin Chim Acta. 443:71–77. 2015.PubMed/NCBI View Article : Google Scholar | |
Frati G, Schirone L, Chimenti I, Yee D, Biondi-Zoccai G, Volpe M and Sciarretta S: An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res. 113:378–388. 2017.PubMed/NCBI View Article : Google Scholar | |
Li R, Zhao Y, Shi J, Zhao C, Xie P, Huang W, Yong T and Cai Z: Effects of PM2.5 exposure in utero on heart injury, histone acetylation and GATA4 expression in offspring mice. Chemosphere. 256(127133)2020.PubMed/NCBI View Article : Google Scholar | |
Ma XN, Li RQ, Xie JL, Li SH, Li JW and Yan XX: PM2.5-induced inflammation and myocardial cell injury in rats. Eur Rev Med Pharmacol Sci. 25:6670–6677. 2021.PubMed/NCBI View Article : Google Scholar | |
Fröde-Saleh TS and Calixto JB: Synergistic antiinflammatory effect of NF-kappaB inhibitors and steroidal or non steroidal antiinflammatory drugs in the pleural inflammation induced by carrageenan in mice. Inflamm Res. 49:330–337. 2000.PubMed/NCBI View Article : Google Scholar | |
Ryu YS, Kang KA, Piao MJ, Ahn MJ, Yi JM, Hyun YM, Kim SH, Ko MK, Park CO and Hyun JW: Particulate matter induces inflammatory cytokine production via activation of NFκB by TLR5-NOX4-ROS signaling in human skin keratinocyte and mouse skin. Redox Biol. 21(101080)2019.PubMed/NCBI View Article : Google Scholar | |
Li H, Shi Y, Wang X, Li P, Zhang S, Wu T, Yan Y, Zhan Y, Ren Y, Rong X, et al: Piceatannol alleviates inflammation and oxidative stress via modulation of the Nrf2/HO-1 and NF-κB pathways in diabetic cardiomyopathy. Chem Biol Interact. 310(108754)2019.PubMed/NCBI View Article : Google Scholar | |
Jiao Y, Wang S, Jiang L, Sun X, Li J, Liu X, Yao X, Zhang C, Wang N, Deng H and Yang G: 2-Undecanone protects against fine particles-induced heart inflammation via modulating Nrf2/HO-1 and NF-κB pathways. Environ Toxicol. 37:1642–1652. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Ji X, Ku T and Sang N: Inflammatory response and endothelial dysfunction in the hearts of mice co-exposed to SO2, NO2, and PM2.5. Environ Toxicol. 31:1996–2005. 2016.PubMed/NCBI View Article : Google Scholar | |
Chen M, Qin X, Qiu L, Chen S, Zhou H, Xu Y, Hu Z, Zhang Y, Cao Q and Ying Z: Concentrated ambient PM2.5-induced inflammation and endothelial dysfunction in a murine model of neural IKK2 deficiency. Environ Health Perspect. 126(027003)2018.PubMed/NCBI View Article : Google Scholar | |
Hu B, Tong B, Xiang Y, Li SR, Tan ZX, Xiang HX, Fu L, Wang H, Zhao H and Xu DX: Acute 1-NP exposure induces inflammatory responses through activating various inflammatory signaling pathways in mouse lungs and human A549 cells. Ecotoxicol Environ Saf. 189(109977)2020.PubMed/NCBI View Article : Google Scholar | |
Duan S, Wang N, Huang L, Zhao Y, Shao H, Jin Y, Zhang R, Li C, Wu W, Wang J and Feng F: NLRP3 inflammasome activation is associated with PM2.5-induced cardiac functional and pathological injury in mice. Environ Toxicol. 34:1246–1254. 2019.PubMed/NCBI View Article : Google Scholar | |
Bevan GH, Al-Kindi SG, Brook RD, Münzel T and Rajagopalan S: Ambient air pollution and atherosclerosis: Insights into dose, time, and mechanisms. Arterioscler Thromb Vasc Biol. 41:628–637. 2021.PubMed/NCBI View Article : Google Scholar | |
West AP: Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology. 391:54–63. 2017.PubMed/NCBI View Article : Google Scholar | |
Breda CNS, Davanzo GG, Basso PJ, Saraiva Câmara NO and Moraes-Vieira PMM: Mitochondria as central hub of the immune system. Redox Biol. 26(101255)2019.PubMed/NCBI View Article : Google Scholar | |
Wang G, Zhao J, Jiang R and Song W: Rat lung response to ozone and fine particulate matter (PM2.5) exposures. Environ Toxicol. 30:343–356. 2015.PubMed/NCBI View Article : Google Scholar | |
Niu J, Liberda EN, Qu S, Guo X, Li X, Zhang J, Meng J, Yan B, Li N, Zhong M, et al: The role of metal components in the cardiovascular effects of PM2.5. PLoS One. 8(e83782)2013.PubMed/NCBI View Article : Google Scholar | |
Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, Van Eylen F, Mandrup-Poulsen T, Herchuelz A and Eizirik DL: Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes. 54:452–461. 2005.PubMed/NCBI View Article : Google Scholar | |
Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, Sparrow D, Vokonas P and Schwartz J: Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology. 21:819–828. 2010.PubMed/NCBI View Article : Google Scholar | |
Hotamisligil GS: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 140:900–917. 2010.PubMed/NCBI View Article : Google Scholar | |
Bettigole SE and Glimcher LH: Endoplasmic reticulum stress in immunity. Annu Rev Immunol. 33:107–138. 2015.PubMed/NCBI View Article : Google Scholar | |
Song S, Tan J, Miao Y, Li M and Zhang Q: Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol. 232:2977–2984. 2017.PubMed/NCBI View Article : Google Scholar | |
Ding Q, Qi Y and Tsang SY: Mitochondrial biogenesis, mitochondrial dynamics, and mitophagy in the maturation of cardiomyocytes. Cells. 10(2463)2021.PubMed/NCBI View Article : Google Scholar | |
Hou L, Zhu ZZ, Zhang X, Nordio F, Bonzini M, Schwartz J, Hoxha M, Dioni L, Marinelli B, Pegoraro V, et al: Airborne particulate matter and mitochondrial damage: A cross-sectional study. Environ Health. 9(48)2010.PubMed/NCBI View Article : Google Scholar | |
Xia T, Kovochich M and Nel AE: Impairment of mitochondrial function by particulate matter (PM) and their toxic components: Implications for PM-induced cardiovascular and lung disease. Front Biosci. 12:1238–1246. 2007.PubMed/NCBI View Article : Google Scholar | |
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM and Kelly DP: Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 106:847–856. 2000.PubMed/NCBI View Article : Google Scholar | |
Meng Z and Liu Y: Cell morphological ultrastructural changes in various organs from mice exposed by inhalation to sulfur dioxide. Inhal Toxicol. 19:543–551. 2007.PubMed/NCBI View Article : Google Scholar | |
Marchini T, Magnani N, D'Annunzio V, Tasat D, Gelpi RJ, Alvarez S and Evelson P: Impaired cardiac mitochondrial function and contractile reserve following an acute exposure to environmental particulate matter. Biochim Biophys Acta. 1830:2545–2552. 2013.PubMed/NCBI View Article : Google Scholar | |
Wang G, Zhen L, Lü P, Jiang R and Song W: Effects of ozone and fine particulate matter (PM2.5) on rat cardiac autonomic nervous system and systemic inflammation. Wei Sheng Yan Jiu. 42:554–560. 2013.PubMed/NCBI(In Chinese). | |
Wang Q and Zhang L, Yuan X, Ou Y, Zhu X, Cheng Z, Zhang P, Wu X, Meng Y and Zhang L: The relationship between the Bcl-2/Bax proteins and the mitochondria-mediated apoptosis pathway in the differentiation of adipose-derived stromal cells into neurons. PLoS One. 11(e0163327)2016.PubMed/NCBI View Article : Google Scholar | |
Zorzano A, Liesa M, Sebastian D, Segales J and Palacin M: Mitochondrial fusion proteins: Dual regulators of morphology and metabolism. Semin Cell Dev Biol. 21:566–574. 2010.PubMed/NCBI View Article : Google Scholar | |
Yang XD, Shi Q, Sun J, Lv Y, Ma Y, Chen C, Xiao K, Zhou W and Dong XP: Aberrant alterations of mitochondrial factors Drp1 and Opa1 in the brains of scrapie experiment rodents. J Mol Neurosci. 61:368–378. 2017.PubMed/NCBI View Article : Google Scholar | |
Westermann B: Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 11:872–884. 2010.PubMed/NCBI View Article : Google Scholar | |
Ikeda Y, Sciarretta S, Nagarajan N, Rubattu S, Volpe M, Frati G and Sadoshima J: New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart. Oxid Med Cell Longev. 2014(210934)2014.PubMed/NCBI View Article : Google Scholar | |
Soberanes S, Urich D, Baker CM, Burgess Z, Chiarella SE, Bell EL, Ghio AJ, De Vizcaya-Ruiz A, Liu J, Ridge KM, et al: Mitochondrial complex III-generated oxidants activate ASK1 and JNK to induce alveolar epithelial cell death following exposure to particulate matter air pollution. J Biol Chem. 284:2176–2186. 2009.PubMed/NCBI View Article : Google Scholar | |
Castilho RF, Meinicke AR, Almeida AM, Hermes-Lima M and Vercesi AE: Oxidative damage of mitochondria induced by Fe(II)citrate is potentiated by Ca2+ and includes lipid peroxidation and alterations in membrane proteins. Arch Biochem Biophys. 308:158–163. 1994.PubMed/NCBI View Article : Google Scholar | |
Packer MA, Porteous CM and Murphy MP: Superoxide production by mitochondria in the presence of nitric oxide forms peroxynitrite. Biochem Mol Biol Int. 40:527–534. 1996.PubMed/NCBI View Article : Google Scholar | |
Meyer JN, Leung MCK, Rooney JP, Sendoel A, Hengartner MO, Kisby GE and Bess AS: Mitochondria as a target of environmental toxicants. Toxicol Sci. 134:1–17. 2013.PubMed/NCBI View Article : Google Scholar | |
Rodriguez-Enriquez S, He L and Lemasters JJ: Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int J Biochem Cell Biol. 36:2463–2472. 2004.PubMed/NCBI View Article : Google Scholar | |
Urrutia PJ, Mena NP and Núñez MT: The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 5(38)2014.PubMed/NCBI View Article : Google Scholar | |
Liang H and Ward WF: PGC-1alpha: A key regulator of energy metabolism. Adv Physiol Educ. 30:145–151. 2006.PubMed/NCBI View Article : Google Scholar | |
Prakash C and Kumar V: Arsenic-induced mitochondrial oxidative damage is mediated by decreased PGC-1α expression and its downstream targets in rat brain. Chem Biol Interact. 256:228–235. 2016.PubMed/NCBI View Article : Google Scholar | |
Chen J, Zhang M, Aniagu S, Jiang Y and Chen T: PM2.5 induces cardiac defects via AHR-SIRT1-PGC-1α mediated mitochondrial damage. Environ Toxicol Pharmacol. 106(104393)2024.PubMed/NCBI View Article : Google Scholar | |
Chen J, Zhang M, Zou H, Aniagu S, Jiang Y and Chen T: PM2.5 induces mitochondrial dysfunction via AHR-mediated cyp1a1 overexpression during zebrafish heart development. Toxicology. 487(153466)2023.PubMed/NCBI View Article : Google Scholar | |
Cavalli G and Heard E: Advances in epigenetics link genetics to the environment and disease. Nature. 571:489–499. 2019.PubMed/NCBI View Article : Google Scholar | |
Marcho C, Oluwayiose OA and Pilsner JR: The preconception environment and sperm epigenetics. Andrology. 8:924–942. 2020.PubMed/NCBI View Article : Google Scholar | |
Sun T, Wu R and Ming L: The role of m6A RNA methylation in cancer. Biomed Pharmacother. 112(108613)2019.PubMed/NCBI View Article : Google Scholar | |
Liu Q and Gregory RI: RNAmod: An integrated system for the annotation of mRNA modifications. Nucleic Acids Res. 47:W548–W555. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z and Zhao JC: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 16:191–198. 2014.PubMed/NCBI View Article : Google Scholar | |
Liu L, Li H, Hu D, Wang Y, Shao W, Zhong J, Yang S, Liu J and Zhang J: Insights into N6-methyladenosine and programmed cell death in cancer. Mol Cancer. 21(32)2022.PubMed/NCBI View Article : Google Scholar | |
Tang F, Chen L, Gao H, Xiao D and Li X: m6A: An emerging role in programmed cell death. Front Cell Dev Biol. 10(817112)2022.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Shen S, Cai Y, Zeng K, Liu K, Li S, Zeng L, Chen L, Tang J, Hu Z, et al: Dynamic patterns of N6-methyladenosine profiles of messenger RNA correlated with the cardiomyocyte regenerability during the early heart development in mice. Oxid Med Cell Longev. 2021(5537804)2021.PubMed/NCBI View Article : Google Scholar | |
Shen S, Liu K, Li S, Rampes S, Yang Y, Huang Y, Tang J, Xia Z, Ma D and Zhang L: N6-methyladenosine modulates long non-coding RNA in the developing mouse heart. Cell Death Discov. 8(329)2022.PubMed/NCBI View Article : Google Scholar | |
Guo X, Lin Y, Lin Y, Zhong Y, Yu H, Huang Y, Yang J, Cai Y, Liu F, Li Y, et al: PM2.5 induces pulmonary microvascular injury in COPD via METTL16-mediated m6A modification. Environ Pollut. 303(119115)2022.PubMed/NCBI View Article : Google Scholar | |
He X, Zhang L, Liu S, Wang J, Liu Y, Xiong A, Jiang M, Luo L, Ying X and Li G: Methyltransferase-like 3 leads to lung injury by up-regulation of interleukin 24 through N6-methyladenosine-dependent mRNA stability and translation efficiency in mice exposed to fine particulate matter 2.5. Environ Pollut. 308(119607)2022.PubMed/NCBI View Article : Google Scholar | |
Ji C, Tao Y, Li X, Wang J, Chen J, Aniagu S, Jiang Y and Chen T: AHR-mediated m6A RNA methylation contributes to PM2.5-induced cardiac malformations in zebrafish larvae. J Hazard Mater. 457(131749)2023.PubMed/NCBI View Article : Google Scholar | |
Ning J, Du H, Zhang Y, Liu Q, Jiang T, Pang Y, Tian X, Yan L, Niu Y and Zhang R: N6-Methyladenosine modification of CDH1 mRNA promotes PM2.5-induced pulmonary fibrosis via mediating epithelial mesenchymal transition. Toxicol Sci. 185:143–157. 2022.PubMed/NCBI View Article : Google Scholar | |
Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K, et al: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 15:707–719. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhao T, Sun D, Zhao M, Lai Y, Liu Y and Zhang Z: N6-methyladenosine mediates arsenite-induced human keratinocyte transformation by suppressing p53 activation. Environ Pollut. 259(113908)2020.PubMed/NCBI View Article : Google Scholar | |
Zhuang C, Zhuang C, Luo X, Huang X, Yao L, Li J, Li Y, Xiong T, Ye J, Zhang F and Gui Y: N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis. J Cell Mol Med. 23:2163–2173. 2019.PubMed/NCBI View Article : Google Scholar | |
Cao J, Qin G, Shi R, Bai F, Yang G, Zhang M and Lv J: Overproduction of reactive oxygen species and activation of MAPKs are involved in apoptosis induced by PM2.5 in rat cardiac H9c2 cells. J Appl Toxicol. 36:609–617. 2016.PubMed/NCBI View Article : Google Scholar | |
Dong W, Matsumura F and Kullman SW: TCDD induced pericardial edema and relative COX-2 expression in medaka (Oryzias Latipes) embryos. Toxicol Sci. 118:213–223. 2010.PubMed/NCBI View Article : Google Scholar | |
Shi Y, Zhao T, Yang X, Sun B, Li Y, Duan J and Sun Z: PM2.5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. Sci Total Environ. 650:908–921. 2019.PubMed/NCBI View Article : Google Scholar | |
Avilla MN, Malecki KMC, Hahn ME, Wilson RH and Bradfield CA: The Ah receptor: Adaptive metabolism, ligand diversity, and the xenokine model. Chem Res Toxicol. 33:860–879. 2020.PubMed/NCBI View Article : Google Scholar | |
Hahn ME, Karchner SI and Merson RR: Diversity as opportunity: Insights from 600 million years of AHR evolution. Curr Opin Toxicol. 2:58–71. 2017.PubMed/NCBI View Article : Google Scholar | |
Jeuken A, Keser BJG, Khan E, Brouwer A, Koeman J and Denison MS: Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits. J Agric Food Chem. 51:5478–5487. 2003.PubMed/NCBI View Article : Google Scholar | |
Aluru N, Kuo E, Helfrich LW, Karchner SI, Linney EA, Pais JE and Franks DG: Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio). Toxicol Appl Pharmacol. 284:142–151. 2015.PubMed/NCBI View Article : Google Scholar | |
Jiang Y, Li J, Ren F, Ji C, Aniagu S and Chen T: PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. Environ Pollut. 255(113331)2019.PubMed/NCBI View Article : Google Scholar | |
Soberanes S, Gonzalez A, Urich D, Chiarella SE, Radigan KA, Osornio-Vargas A, Joseph J, Kalyanaraman B, Ridge KM, Chandel NS, et al: Particulate matter air pollution induces hypermethylation of the p16 promoter via a mitochondrial ROS-JNK-DNMT1 pathway. Sci Rep. 2(275)2012.PubMed/NCBI View Article : Google Scholar | |
Al-Saleh I, Shinwari N, Mashhour A, Mohamed Gel D and Rabah A: Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Environ Health. 214:79–101. 2011.PubMed/NCBI View Article : Google Scholar | |
Maccani JZJ, Koestler DC, Lester B, Houseman EA, Armstrong DA, Kelsey KT and Marsit CJ: Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect. 123:723–729. 2015.PubMed/NCBI View Article : Google Scholar | |
Mohanty AF, Farin FM, Bammler TK, MacDonald JW, Afsharinejad Z, Burbacher TM, Siscovick DS, Williams MA and Enquobahrie DA: Infant sex-specific placental cadmium and DNA methylation associations. Environ Res. 138:74–81. 2015.PubMed/NCBI View Article : Google Scholar | |
Li W, Liu H, Yu M, Zhang X, Zhang Y, Liu H, Wilson JX and Huang G: Folic acid alters methylation profile of JAK-STAT and long-term depression signaling pathways in Alzheimer's disease models. Mol Neurobiol. 53:6548–6556. 2016.PubMed/NCBI View Article : Google Scholar | |
Maghbooli Z, Hossein-Nezhad A, Adabi E, Asadollah-Pour E, Sadeghi M, Mohammad-Nabi S, Zakeri Rad L, Malek Hosseini AA, Radmehr M, Faghihi F, et al: Air pollution during pregnancy and placental adaptation in the levels of global DNA methylation. PLoS One. 13(e0199772)2018.PubMed/NCBI View Article : Google Scholar | |
Goodson JM, Weldy CS, MacDonald JW, Liu Y, Bammler TK, Chien WM and Chin MT: In utero exposure to diesel exhaust particulates is associated with an altered cardiac transcriptional response to transverse aortic constriction and altered DNA methylation. FASEB J. 31:4935–4945. 2017.PubMed/NCBI View Article : Google Scholar | |
Wauters A, Dreyfuss C, Pochet S, Hendrick P, Berkenboom G, van de Borne P and Argacha JF: Acute exposure to diesel exhaust impairs nitric oxide-mediated endothelial vasomotor function by increasing endothelial oxidative stress. Hypertension. 62:352–358. 2013.PubMed/NCBI View Article : Google Scholar | |
Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A and Sowers LC: Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32:4100–4108. 2004.PubMed/NCBI View Article : Google Scholar | |
Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K, et al: Genome-wide analysis of DNA methylation and fine particulate matter air pollution in three study populations: KORA F3, KORA F4, and the normative aging study. Environ Health Perspect. 124:983–990. 2016.PubMed/NCBI View Article : Google Scholar | |
Wei S, Segura S, Vendrell J, Aviles FX, Lanoue E, Day R, Feng Y and Fricker LD: Identification and characterization of three members of the human metallocarboxypeptidase gene family. J Biol Chem. 277:14954–14964. 2002.PubMed/NCBI View Article : Google Scholar | |
Bellavia A, Urch B, Speck M, Brook RD, Scott JA, Albetti B, Behbod B, North M, Valeri L, Bertazzi PA, et al: DNA hypomethylation, ambient particulate matter, and increased blood pressure: Findings from controlled human exposure experiments. J Am Heart Assoc. 2(e000212)2013.PubMed/NCBI View Article : Google Scholar | |
Shahbazian MD and Grunstein M: Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 76:75–100. 2007.PubMed/NCBI View Article : Google Scholar | |
Chervona Y, Hall MN, Arita A, Wu F, Sun H, Tseng HC, Ali E, Uddin MN, Liu X, Zoroddu MA, et al: Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer Epidemiol Biomarkers Prev. 21:2252–2260. 2012.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Chen L, Xing X, Li D, Gao C, He Z, Li J, Zhu X, Xiao X, Wang S, et al: Specific histone modifications were associated with the PAH-induced DNA damage response in coke oven workers. Toxicol Res (Camb). 5:1193–1201. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Zhao YT and Zhao TC: Histone deacetylases in modulating cardiac disease and their clinical translational and therapeutic implications. Exp Biol Med (Maywood). 246:213–225. 2021.PubMed/NCBI View Article : Google Scholar | |
Sun H, Yang X, Zhu J, Lv T, Chen Y, Chen G, Zhong L, Li Y, Huang X, Huang G and Tian J: Inhibition of p300-HAT results in a reduced histone acetylation and down-regulation of gene expression in cardiac myocytes. Life Sci. 87:707–714. 2010.PubMed/NCBI View Article : Google Scholar | |
Hu DX, Liu XB, Song WC and Wang JA: Roles of SIRT3 in heart failure: From bench to bedside. J Zhejiang Univ Sci B. 17:821–830. 2016.PubMed/NCBI View Article : Google Scholar | |
Li Y, Ma Y, Song L, Yu L, Zhang L, Zhang Y, Xing Y, Yin Y and Ma H: SIRT3 deficiency exacerbates p53/Parkin-mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts. Int J Mol Med. 41:3517–3526. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J and Cai L: Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxid Med Cell Longev. 2014(641979)2014.PubMed/NCBI View Article : Google Scholar | |
Chen H, Giri NC, Zhang R, Yamane K, Zhang Y, Maroney M and Costa M: Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem. 285:7374–7383. 2010.PubMed/NCBI View Article : Google Scholar | |
Prins D and Michalak M: Endoplasmic reticulum proteins in cardiac development and dysfunction. Can J Physiol Pharmacol. 87:419–425. 2009.PubMed/NCBI View Article : Google Scholar | |
Zhu Y, Guan H, Zhu X, Cai J, Jiao X, Shan J, Li Y, Wu Q and Zhang Z: Astilbin antagonizes developmental cardiotoxicity after cadmium exposure in chicken embryos by inhibiting endoplasmic reticulum stress and maintaining calcium homeostasis. Ecotoxicol Environ Saf. 270(115847)2024.PubMed/NCBI View Article : Google Scholar | |
Minamino T and Kitakaze M: ER stress in cardiovascular disease. J Mol Cell Cardiol. 48:1105–1110. 2010.PubMed/NCBI View Article : Google Scholar | |
Li R, Zhang M, Wang Y, Yung KKL, Su R, Li Z, Zhao L, Dong C and Cai Z: Effects of sub-chronic exposure to atmospheric PM2.5 on fibrosis, inflammation, endoplasmic reticulum stress and apoptosis in the livers of rats. Toxicol Res (Camb). 7:271–282. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang Y and Tang M: PM2.5 induces autophagy and apoptosis through endoplasmic reticulum stress in human endothelial cells. Sci Total Environ. 710(136397)2020.PubMed/NCBI View Article : Google Scholar | |
Chen T, Jin H, Wang H, Yao Y, Aniagu S, Tong J and Jiang Y: Aryl hydrocarbon receptor mediates the cardiac developmental toxicity of EOM from PM2.5 in P19 embryonic carcinoma cells. Chemosphere. 216:372–378. 2019.PubMed/NCBI View Article : Google Scholar | |
de la Harpe A, Beukes N and Frost CL: CBD activation of TRPV1 induces oxidative signaling and subsequent ER stress in breast cancer cell lines. Biotechnol Appl Biochem. 69:420–430. 2022.PubMed/NCBI View Article : Google Scholar | |
Malhotra JD and Kaufman RJ: Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? Antioxid Redox Signal. 9:2277–2293. 2007.PubMed/NCBI View Article : Google Scholar | |
Ozgur R, Uzilday B, Sekmen AH and Turkan I: The effects of induced production of reactive oxygen species in organelles on endoplasmic reticulum stress and on the unfolded protein response in arabidopsis. Ann Bot. 116:541–553. 2015.PubMed/NCBI View Article : Google Scholar | |
Burgos-Morón E, Abad-Jiménez Z, Marañón AM, Iannantuoni F, Escribano-López I, López-Domènech S, Salom C, Jover A, Mora V, Roldan I, et al: Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J Clin Med. 8(1385)2019.PubMed/NCBI View Article : Google Scholar | |
Jiang B, Zhou X, Yang T, Wang L, Feng L, Wang Z, Xu J, Jing W, Wang T, Su H, et al: The role of autophagy in cardiovascular disease: Cross-interference of signaling pathways and underlying therapeutic targets. Front Cardiovasc Med. 10(1088575)2023.PubMed/NCBI View Article : Google Scholar | |
Lavandero S, Chiong M, Rothermel BA and Hill JA: Autophagy in cardiovascular biology. J Clin Invest. 125:55–64. 2015.PubMed/NCBI View Article : Google Scholar | |
Lee E, Koo Y, Ng A, Wei Y, Luby-Phelps K, Juraszek A, Xavier RJ, Cleaver O, Levine B and Amatruda JF: Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy. 10:572–587. 2014.PubMed/NCBI View Article : Google Scholar | |
Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et al: The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 13:619–624. 2007.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Fang J, Leonard SS and Rao KM: Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med. 36:1434–1443. 2004.PubMed/NCBI View Article : Google Scholar | |
Høyer-Hansen M and Jäättelä M: Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 14:1576–1582. 2007.PubMed/NCBI View Article : Google Scholar | |
Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R and Pinton P: Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium. 43:184–195. 2008.PubMed/NCBI View Article : Google Scholar | |
Zheng Q, Chen Y, Chen D, Zhao H, Feng Y, Meng Q, Zhao Y and Zhang H: Calcium transients on the ER surface trigger liquid-liquid phase separation of FIP200 to specify autophagosome initiation sites. Cell. 185:4082–4098.e22. 2022.PubMed/NCBI View Article : Google Scholar | |
Sun M, Jiang Z, Gu P, Guo B, Li J, Cheng S, Ba Q and Wang H: Cadmium promotes colorectal cancer metastasis through EGFR/Akt/mTOR signaling cascade and dynamics. Sci Total Environ. 899(165699)2023.PubMed/NCBI View Article : Google Scholar | |
Lian J, Wu X, He F, Karnak D, Tang W, Meng Y, Xiang D, Ji M, Lawrence TS and Xu L: A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum. Cell Death Differ. 18:60–71. 2011.PubMed/NCBI View Article : Google Scholar | |
Plácido AI, Pereira CM, Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Oliveira CR and Moreira PI: The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: Implications for Alzheimer's disease. Biochim Biophys Acta. 1842:1444–1453. 2014.PubMed/NCBI View Article : Google Scholar | |
Su R, Jin X, Lyu L, Tian J, Amin S and Li Z: The potential immunotoxicity of fine particulate matter based on SD rat spleen. Environ Sci Pollut Res Int. 26:23958–23966. 2019.PubMed/NCBI View Article : Google Scholar | |
Rubiolo JA, López-Alonso H, Martinez P, Millán A, Cagide E, Vieytes MR, Vega FV and Botana LM: Yessotoxin induces ER-stress followed by autophagic cell death in glioma cells mediated by mTOR and BNIP3. Cell Signal. 26:419–432. 2014.PubMed/NCBI | |
Carloni S, Favrais G, Saliba E, Albertini MC, Chalon S, Longini M, Gressens P, Buonocore G and Balduini W: Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway. J Pineal Res. 61:370–380. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang S, Jiang C, Liu H, Guan Z, Zeng Q, Zhang C, Lei R, Xia T, Gao H, Yang L, et al: Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response. Toxicol Appl Pharmacol. 271:206–215. 2013.PubMed/NCBI View Article : Google Scholar | |
Dagher Z, Garçon G, Billet S, Gosset P, Ledoux F, Courcot D, Aboukais A and Shirali P: Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. Toxicology. 225:12–24. 2006.PubMed/NCBI View Article : Google Scholar | |
Yang X, Zhao T, Feng L, Shi Y, Jiang J, Liang S, Sun B, Xu Q, Duan J and Sun Z: PM2.5-induced ADRB2 hypermethylation contributed to cardiac dysfunction through cardiomyocytes apoptosis via PI3K/Akt pathway. Environ Int. 127:601–614. 2019.PubMed/NCBI View Article : Google Scholar | |
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007.PubMed/NCBI View Article : Google Scholar | |
Yang X, Feng L, Zhang Y, Hu H, Shi Y, Liang S, Zhao T, Fu Y, Duan J and Sun Z: Cytotoxicity induced by fine particulate matter (PM2.5) via mitochondria-mediated apoptosis pathway in human cardiomyocytes. Ecotoxicol Environ Saf. 161:198–207. 2018.PubMed/NCBI View Article : Google Scholar | |
Bock FJ and Tait SWG: Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. 2020.PubMed/NCBI View Article : Google Scholar | |
Su CH, Chen SP, Chen LY, Yang JJ, Lee YC, Lee SS, Chen HH, Ng YY and Kuan YH: 3-Bromofluoranthene-induced cardiotoxicity of zebrafish and apoptosis in the vascular endothelial cells via intrinsic and extrinsic caspase-dependent pathways. Ecotoxicol Environ Saf. 228(112962)2021.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
Gombedza FC, Shin S, Kanaras YL and Bandyopadhyay BC: Abrogation of store-operated Ca2+ entry protects against crystal-induced ER stress in human proximal tubular cells. Cell Death Discov. 5(124)2019.PubMed/NCBI View Article : Google Scholar | |
Dlamini Z, Tshidino SC and Hull R: Abnormalities in alternative splicing of apoptotic genes and cardiovascular diseases. Int J Mol Sci. 16:27171–27190. 2015.PubMed/NCBI View Article : Google Scholar | |
Yan L, Zhou Y, Yu S, Ji G, Wang L, Liu W and Gu A: 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish. Exp Cell Res. 319:2954–2963. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Ren X, Zhu R, Luo Z and Ren B: Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat Toxicol. 180:56–70. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Wang S, Wu Y, You H and Lv L: Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol. 136-137:49–59. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhu L, Dong X, Xie H, Wang J, Wang J, Su J and Yu C: DNA damage and effects on glutathione-S-transferase activity induced by atrazine exposure in zebrafish (Danio rerio). Environ Toxicol. 26:480–488. 2011.PubMed/NCBI View Article : Google Scholar | |
Liu H, Cheng Y, Yang J, Wang W, Fang S, Zhang W, Han B, Zhou Z, Yao H, Chao J and Liao H: BBC3 in macrophages promoted pulmonary fibrosis development through inducing autophagy during silicosis. Cell Death Dis. 8(e2657)2017.PubMed/NCBI View Article : Google Scholar | |
Huang DC and Strasser A: BH3-Only proteins-essential initiators of apoptotic cell death. Cell. 103:839–842. 2000.PubMed/NCBI View Article : Google Scholar | |
Kedinger V, Alpy F, Tomasetto C, Thisse C, Thisse B and Rio MC: Spatial and temporal distribution of the traf4 genes during zebrafish development. Gene Expr Patterns. 5:545–552. 2005.PubMed/NCBI View Article : Google Scholar | |
Sax JK and El-Deiry WS: Identification and characterization of the cytoplasmic protein TRAF4 as a p53-regulated proapoptotic gene. J Biol Chem. 278:36435–36444. 2003.PubMed/NCBI View Article : Google Scholar | |
Ruan X, Zhang R, Li R, Zhu H, Wang Z, Wang C, Cheng Z and Peng H: The research progress in physiological and pathological functions of TRAF4. Front Oncol. 12(842072)2022.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Cui S, Shen L, Gao Y, Liu W, Zhang C and Zhuang S: Promotion of bladder cancer cell metastasis by 2-mercaptobenzothiazole via its activation of Aryl hydrocarbon receptor transcription: Molecular dynamics simulations, cell-based assays, and machine learning-driven prediction. Environ Sci Technol. 56:13254–13263. 2022.PubMed/NCBI View Article : Google Scholar | |
Yue C, Ji C, Zhang H, Zhang LW, Tong J, Jiang Y and Chen T: Protective effects of folic acid on PM2.5-induced cardiac developmental toxicity in zebrafish embryos by targeting AhR and Wnt/β-catenin signal pathways. Environ Toxicol. 32:2316–2322. 2017.PubMed/NCBI View Article : Google Scholar | |
Bello SM, Heideman W and Peterson RE: 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits regression of the common cardinal vein in developing zebrafish. Toxicol Sci. 78:258–266. 2004.PubMed/NCBI View Article : Google Scholar | |
Fu H, Wang L, Wang J, Bennett BD, Li JL, Zhao B and Hu G: Dioxin and AHR impairs mesoderm gene expression and cardiac differentiation in human embryonic stem cells. Sci Total Environ. 651:1038–1046. 2019.PubMed/NCBI View Article : Google Scholar | |
Lund AK, Goens MB, Nuñez BA and Walker MK: Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice. Toxicol Appl Pharmacol. 212:127–135. 2006.PubMed/NCBI View Article : Google Scholar | |
Evans BR, Karchner SI, Franks DG and Hahn ME: Duplicate aryl hydrocarbon receptor repressor genes (ahrr1 and ahrr2) in the zebrafish Danio rerio: Structure, function, evolution, and AHR-dependent regulation in vivo. Arch Biochem Biophys. 441:151–167. 2005.PubMed/NCBI View Article : Google Scholar | |
Jenny MJ, Karchner SI, Franks DG, Woodin BR, Stegeman JJ and Hahn ME: Distinct roles of two zebrafish AHR repressors (AHRRa and AHRRb) in embryonic development and regulating the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci. 110:426–441. 2009.PubMed/NCBI View Article : Google Scholar | |
Jayasundara N, Van Tiem Garner L, Meyer JN, Erwin KN and Di Giulio RT: AHR2-mediated transcriptomic responses underlying the synergistic cardiac developmental toxicity of PAHs. Toxicol Sci. 143:469–481. 2015.PubMed/NCBI View Article : Google Scholar | |
Ko CI, Fan Y, de Gannes M, Wang Q, Xia Y and Puga A: Repression of the Aryl hydrocarbon receptor is required to maintain mitotic progression and prevent loss of pluripotency of embryonic stem cells. Stem Cells. 34:2825–2839. 2016.PubMed/NCBI View Article : Google Scholar | |
Jiang Y, Wang D, Zhang G, Wang G, Tong J and Chen T: Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene. Environ Toxicol. 31:1372–1380. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang Q, Chen J, Ko CI, Fan Y, Carreira V, Chen Y, Xia Y, Medvedovic M and Puga A: Disruption of aryl hydrocarbon receptor homeostatic levels during embryonic stem cell differentiation alters expression of homeobox transcription factors that control cardiomyogenesis. Environ Health Perspect. 121:1334–1343. 2013.PubMed/NCBI View Article : Google Scholar | |
Carreira VS, Fan Y, Kurita H, Wang Q, Ko CI, Naticchioni M, Jiang M, Koch S, Zhang X, Biesiada J, et al: Disruption of Ah receptor signaling during mouse development leads to abnormal cardiac structure and function in the adult. PLoS One. 10(e0142440)2015.PubMed/NCBI View Article : Google Scholar | |
Wang Q, Kurita H, Carreira V, Ko CI, Fan Y, Zhang X, Biesiada J, Medvedovic M and Puga A: Ah receptor activation by dioxin disrupts activin, BMP, and WNT signals during the early differentiation of mouse embryonic stem cells and inhibits cardiomyocyte functions. Toxicol Sci. 149:346–357. 2016.PubMed/NCBI View Article : Google Scholar | |
Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J and Rao MS: Differences between human and mouse embryonic stem cells. Dev Biol. 269:360–380. 2004.PubMed/NCBI View Article : Google Scholar | |
Dere E, Lee AW, Burgoon LD and Zacharewski TR: Differences in TCDD-elicited gene expression profiles in human HepG2, mouse Hepa1c1c7 and rat H4IIE hepatoma cells. BMC Genomics. 12(193)2011.PubMed/NCBI View Article : Google Scholar | |
Suzuki T and Nohara K: Regulatory factors involved in species-specific modulation of arylhydrocarbon receptor (AhR)-dependent gene expression in humans and mice. J Biochem. 142:443–452. 2007.PubMed/NCBI View Article : Google Scholar | |
Jiang Y, Zhao X, Chen J, Aniagu S and Chen T: PM2.5 induces cardiac malformations via PI3K/akt2/mTORC1 signaling pathway in zebrafish larvae. Environ Pollut. 323(121306)2023.PubMed/NCBI View Article : Google Scholar | |
Ozhan G and Weidinger G: Wnt/β-catenin signaling in heart regeneration. Cell Regen. 4(3)2015.PubMed/NCBI View Article : Google Scholar | |
Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, Reinecke H, Moon RT and Murry CE: Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA. 104:9685–9690. 2007.PubMed/NCBI View Article : Google Scholar | |
Schneider AJ, Branam AM and Peterson RE: Intersection of AHR and Wnt signaling in development, health, and disease. Int J Mol Sci. 15:17852–17885. 2014.PubMed/NCBI View Article : Google Scholar | |
Wincent E, Stegeman JJ and Jönsson ME: Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions. Toxicol Appl Pharmacol. 284:163–179. 2015.PubMed/NCBI View Article : Google Scholar | |
Blache P, van de Wetering M, Duluc I, Domon C, Berta P, Freund JN, Clevers H and Jay P: SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 166:37–47. 2004.PubMed/NCBI View Article : Google Scholar | |
Liu Z, Li T, Liu Y, Jia Z, Li Y, Zhang C, Chen P, Ma K, Affara N and Zhou C: WNT signaling promotes Nkx2.5 expression and early cardiomyogenesis via downregulation of Hdac1. Biochim Biophys Acta. 1793:300–311. 2009.PubMed/NCBI View Article : Google Scholar | |
Lin X and Xu X: Distinct functions of Wnt/beta-catenin signaling in KV development and cardiac asymmetry. Development. 136:207–217. 2009.PubMed/NCBI View Article : Google Scholar | |
Chiu CS, Tsai CH, Hsieh MS, Tsai SC, Jan YJ, Lin WY, Lai DW, Wu SM, Hsing HY, Arbiser JL and Sheu ML: Exploiting Honokiol-induced ER stress CHOP activation inhibits the growth and metastasis of melanoma by suppressing the MITF and β-catenin pathways. Cancer Lett. 442:113–125. 2019.PubMed/NCBI View Article : Google Scholar | |
Valavanidis A, Fiotakis K and Vlachogianni T: Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 26:339–362. 2008.PubMed/NCBI View Article : Google Scholar | |
Fu Y, Niu Y, Pan B, Liu Y, Zhang B, Li X, Yang A, Nie J, Wang R and Yang J: OGG1 methylation mediated the effects of cell cycle and oxidative DNA damage related to PAHs exposure in Chinese coke oven workers. Chemosphere. 224:48–57. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Xing X, Jiang S, Qiu C, Mo Z, Chen S, Chen L, Wang Q, Xiao Y, Dong G, et al: Global H3K79 di-methylation mediates DNA damage response to PAH exposure in Chinese coke oven workers. Environ Pollut. 268(115956)2021.PubMed/NCBI View Article : Google Scholar | |
Zhao L, Zhang L, Chen M, Dong C, Li R and Cai Z: Effects of ambient atmospheric PM2.5, 1-nitropyrene and 9-nitroanthracene on DNA damage and oxidative stress in hearts of rats. Cardiovasc Toxicol. 19:178–190. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang W, Li Y, Liu X, Jin M, Du H, Liu Y, Huang P, Zhou X, Yuan L and Sun Z: Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line. Int J Nanomedicine. 8:3533–3541. 2013.PubMed/NCBI View Article : Google Scholar | |
Gutiérrez-Castillo ME, Roubicek DA, Cebrián-García ME, De Vizcaya-Ruíz A, Sordo-Cedeño M and Ostrosky-Wegman P: Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter. Environ Mol Mutagen. 47:199–211. 2006.PubMed/NCBI View Article : Google Scholar | |
Risom L, Møller P and Loft S: Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res. 592:119–137. 2005.PubMed/NCBI View Article : Google Scholar | |
Zhang P, Yi LH, Meng GY, Zhang HY, Sun HH and Cui LQ: Apelin-13 attenuates cisplatin-induced cardiotoxicity through inhibition of ROS-mediated DNA damage and regulation of MAPKs and AKT pathways. Free Radic Res. 51:449–459. 2017.PubMed/NCBI View Article : Google Scholar | |
Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM, Hider R, Kelly F, Kooter IM, et al: Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential-a workshop report and consensus statement. Inhal Toxicol. 20:75–99. 2008.PubMed/NCBI View Article : Google Scholar | |
Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D, Rickman BH, Rogers AB, Moroski-Erkul CA, McFaline JL, et al: DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest. 118:2516–2525. 2008.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Jiang Y and Yang J: p53-independent signaling pathway in DNA damage-induced cell apoptosis. Zhejiang Da Xue Xue Bao Yi Xue Ban. 42:217–223. 2013.PubMed/NCBI(In Chinese). | |
De Zio D, Cianfanelli V and Cecconi F: New insights into the link between DNA damage and apoptosis. Antioxid Redox Signal. 19:559–571. 2013.PubMed/NCBI View Article : Google Scholar | |
Lorda-Diez CI, Solis-Mancilla ME, Sanchez-Fernandez C, Garcia-Porrero JA, Hurle JM and Montero JA: Cell senescence, apoptosis and DNA damage cooperate in the remodeling processes accounting for heart morphogenesis. J Anat. 234:815–829. 2019.PubMed/NCBI View Article : Google Scholar | |
Huang Y, Tao Y, Cai C, Chen J, Ji C, Aniagu S, Jiang Y and Chen T: Using immunofluorescence to Detect PM2.5-induced DNA damage in zebrafish embryo hearts. J Vis Exp, 2021. | |
Cartwright EJ, Oceandy D, Austin C and Neyses L: Ca2+ signalling in cardiovascular disease: The role of the plasma membrane calcium pumps. Sci China Life Sci. 54:691–698. 2011.PubMed/NCBI View Article : Google Scholar | |
Cai C, Huang J, Lin Y, Miao W, Chen P, Chen X, Wang J and Chen M: Particulate matter 2.5 induced arrhythmogenesis mediated by TRPC3 in human induced pluripotent stem cell-derived cardiomyocytes. Arch Toxicol. 93:1009–1020. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Wu T and Tang M: Ambient particulate matter triggers dysfunction of subcellular structures and endothelial cell apoptosis through disruption of redox equilibrium and calcium homeostasis. J Hazard Mater. 394(122439)2020.PubMed/NCBI View Article : Google Scholar | |
Dong L, Sun W, Li F, Shi M, Meng X, Wang C, Meng M, Tang W, Liu H, Wang L and Song L: The harmful effects of acute PM2.5 exposure to the heart and a novel preventive and therapeutic function of CEOs. Sci Rep. 9(3495)2019.PubMed/NCBI View Article : Google Scholar | |
Xu R, Cao JW, Xu TC, Liu TJ, Zhu MR and Guo MY: Selenium deficiency induced inflammation and apoptosis via NF-κB and MAPKs pathways in muscle of common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 138(108847)2023.PubMed/NCBI View Article : Google Scholar | |
Nowak WN, Deng J, Ruan XZ and Xu Q: Reactive oxygen species generation and atherosclerosis. Arterioscler Thromb Vasc Biol. 37:e41–e52. 2017.PubMed/NCBI View Article : Google Scholar | |
Rajakumar S, Bhanupriya N, Ravi C and Nachiappan V: Endoplasmic reticulum stress and calcium imbalance are involved in cadmium-induced lipid aberrancy in Saccharomyces cerevisiae. Cell Stress Chaperones. 21:895–906. 2016.PubMed/NCBI View Article : Google Scholar | |
Vohra K, Vodonos A, Schwartz J, Marais EA, Sulprizio MP and Mickley LJ: Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-chem. Environ Res. 195(110754)2021.PubMed/NCBI View Article : Google Scholar | |
Maciejczyk P, Chen LC and Thurston G: The role of fossil fuel combustion metals in PM air pollution health associations. Atmosphere. 12(1086)2021. | |
Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O'Reilly S, Brauer M, Caravanos J, Chiles T, Cohen A, Corra L, et al: Pollution and health: A progress update. Lancet Planet Health. 6:e535–e547. 2022.PubMed/NCBI View Article : Google Scholar | |
Landrigan PJ, Britt M, Fisher S, Holmes A, Kumar M, Mu J, Rizzo I, Sather A, Yousuf A and Kumar P: Assessing the human health benefits of climate mitigation, pollution prevention, and biodiversity preservation. Ann Glob Health. 90(1)2024.PubMed/NCBI View Article : Google Scholar | |
Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, Baldé AB, Bertollini R, Bose-O'Reilly S, Boufford JI, et al: The lancet commission on pollution and health. Lancet. 391:462–512. 2018.PubMed/NCBI View Article : Google Scholar | |
Yang BY, Qu Y, Guo Y, Markevych I, Heinrich J, Bloom MS, Bai Z, Knibbs LC, Li S, Chen G, et al: Maternal exposure to ambient air pollution and congenital heart defects in China. Environ Int. 153(106548)2021.PubMed/NCBI View Article : Google Scholar |