1.
|
Madea B, Saukko P and Musshoff F: Tasks of
research in forensic medicine – different study types in clinical
research and forensic medicine. Forensic Sci Int. 165:92–97.
2007.
|
2.
|
Thaik-Oo M, Tanaka E, Tsuchiya T, et al:
Estimation of postmortem interval from hypoxic inducible levels of
vascular endothelial growth factor. J Forensic Sci. 47:186–189.
2002.PubMed/NCBI
|
3.
|
Madea B: Is there recent progress in the
estimation of the postmortem interval by means of thanatochemistry?
Forensic Sci Int. 151:139–149. 2005. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Amendt J, Krettek R and Zehner R: Forensic
entomology. Naturwissenschaften. 91:51–65. 2004. View Article : Google Scholar
|
5.
|
Gallois-Montbrun FG, Barres DR and Durigon
M: Postmortem interval estimation by biochemical determination in
birds muscle. Forensic Sci Int. 37:189–192. 1988. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Gos T and Raszeja S: Postmortem activity
of lactate and malate dehydrogenase in human liver in relation to
time after death. Int J Legal Med. 106:25–29. 1993. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Kang S, Kassam N, Gauthier ML and O’Day
DH: Post-mortem changes in calmodulin binding proteins in muscle
and lung. Forensic Sci Int. 131:140–147. 2003. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Mittmeyer HJ: [Investigations to determine
the time of death, late post mortem, by means of electrophoresis of
inner organs (author’s translation)]. Z Rechtsmed. 84:47–56.
1979.
|
9.
|
Mittmeyer HJ: [Determination of the
myo-albumin content. A possibility to determine the hour of death
(author’s translation)]. Z Rechtsmed. 84:233–237. 1980.
|
10.
|
Mittmeyer HJ and Strebel KH: [Experimental
examinations on forensic determination of time of death by
electrofocusing of soluble muscle protein (author’s translation)].
Z Rechtsmed. 85:235–240. 1980.
|
11.
|
Neis P, Hille R, Paschke M, et al:
Strontium90 for determination of time since death. Forensic Sci
Int. 99:47–51. 1999. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Sabucedo AJ and Furton KG: Estimation of
postmortem interval using the protein marker cardiac Troponin I.
Forensic Sci Int. 134:11–16. 2003. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Wehner F, Wehner HD, Schieffer MC and
Subke J: Delimitation of the time of death by immunohistochemical
detection of insulin in pancreatic beta-cells. Forensic Sci Int.
105:161–169. 1999. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Henssge C and Madea B: Estimation of the
time since death. Forensic Sci Int. 165:182–184. 2007. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Ito T, Kawahara K, Nakamura T, et al:
High-mobility group box 1 protein promotes development of
microvascular thrombosis in rats. J Thromb Haemost. 5:109–116.
2007. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Scaffidi P, Misteli T and Bianchi ME:
Release of chromatin protein HMGB1 by necrotic cells triggers
inflammation. Nature. 418:191–195. 2002. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Kawahara K, Tancharoen S, Hashiguchi T, et
al: Inhibition of HMGB1 by deep ocean water attenuates
endotoxin-induced sepsis. Med Hypotheses. 68:1429–1430. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18.
|
Dumitriu IE, Baruah P, Manfredi AA,
Bianchi ME and Rovere-Querini P: HMGB1: guiding immunity from
within. Trends Immunol. 26:381–387. 2005. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Goldstein RS, Gallowitsch-Puerta M, Yang
L, et al: Elevated high-mobility group box 1 levels in patients
with cerebral and myocardial ischemia. Shock. 25:571–574. 2006.
View Article : Google Scholar : PubMed/NCBI
|
20.
|
Inoue K, Kawahara K, Biswas KK, et al:
HMGB1 expression by activated vascular smooth muscle cells in
advanced human atherosclerosis plaques. Cardiovasc Pathol.
16:136–143. 2007. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Kawahara K, Setoyama K, Kikuchi K, et al:
HMGB1 release in co-cultures of porcine endothelial and human T
cells. Xenotransplantation. 14:636–641. 2007. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Kikuchi K, Kawahara KI, Biswas KK, et al:
Minocycline attenuates both OGD-induced HMGB1 release and
HMGB1-induced cell death in ischemic neuronal injury in PC12 cells.
Biochem Biophys Res Commun. 385:132–136. 2009. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Kikuchi K, Kawahara KI, Tancharoen S, et
al: The free-radical scavenger edaravone rescues rats from cerebral
infarction by attenuating the release of high-mobility group box-1
in neuronal cells. J Pharmacol Exp Ther. 329:865–874. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24.
|
Lotze MT and Tracey KJ: High-mobility
group box 1 protein (HMGB1): nuclear weapon in the immune arsenal.
Nat Rev Immunol. 5:331–342. 2005. View
Article : Google Scholar : PubMed/NCBI
|
25.
|
Morimoto Y, Kawahara KI, Tancharoen S, et
al: Tumor necrosis factor-alpha stimulates gingival epithelial
cells to release high mobility-group box 1. J Periodontal Res.
43:76–83. 2008. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Taniguchi N, Kawahara K, Yone K, et al:
High mobility group box chromosomal protein 1 plays a role in the
pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis
Rheum. 48:971–981. 2003. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Ulloa L and Messmer D: High-mobility group
box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev.
17:189–201. 2006. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Wang H, Bloom O, Zhang M, et al: HMG-1 as
a late mediator of endotoxin lethality in mice. Science.
285:248–251. 1999. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Yasuda T, Ueda T, Takeyama Y, et al:
Significant increase of serum high-mobility group box chromosomal
protein 1 levels in patients with severe acute pancreatitis.
Pancreas. 33:359–363. 2006. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Henssge C: Concerning the paper by Mall
et al, entitled ‘Temperature-based death time estimation
with only partially environment conditions’ (Int J Legal Med (2005)
119: 185–194). Int J Legal Med. 121:822007.PubMed/NCBI
|
31.
|
Henssge C, Althaus L, Bolt J, et al:
Experiences with a compound method for estimating the time since
death. I. Rectal temperature nomogram for time since death. Int J
Legal Med. 113:303–319. 2000. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Mall G, Eckl M, Sinicina I, Peschel O and
Hubig M: Temperature-based death time estimation with only
partially known environmental conditions. Int J Legal Med.
119:185–194. 2005. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Vanezis P: Forensic medicine: past,
present and future. Lancet. 364:8–9. 2004. View Article : Google Scholar
|
34.
|
Dirnhofer R, Jackowski C, Vock P, Potter K
and Thali MJ: VIRTOPSY: minimally invasive, imaging-guided virtual
autopsy. Radiographics. 26:1305–1333. 2006. View Article : Google Scholar : PubMed/NCBI
|
35.
|
Hayakawa M, Yamamoto S, Motani H, Yajima
D, Sato Y and Iwase H: Does imaging technology overcome problems of
conventional postmortem examination? A trial of computed tomography
imaging for postmortem examination. Int J Legal Med. 120:24–26.
2006. View Article : Google Scholar
|