1.
|
Hendrick JP and Hartl FU: Molecular
chaperone functions of heat-shock proteins. Annu Rev Biochem.
62:349–384. 1993. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Benjamin IJ and McMillan DR: Stress (heat
shock) proteins: molecular chaperones in cardiovascular biology and
disease. Circ Res. 83:117–132. 1998. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Landry J, Lambert H, Zhou M, Lavoie JN,
Hickey E, Weber LA and Anderson CW: Human HSP27 is phosphorylated
at serines 78 and 82 by heat shock and mitogen-activated kinases
that recognize the same amino acid motif as S6 kinase II. J Biol
Chem. 267:794–803. 1992.PubMed/NCBI
|
4.
|
Kato K, Hasegawa K, Goto S and Inaguma Y:
Dissociation as a result of phosphorylation of an aggregated form
of the small stress protein, hsp27. J Biol Chem. 269:11274–11278.
1994.PubMed/NCBI
|
5.
|
Rogalla T, Ehrnsperger M, Preville X,
Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP,
Buchner J and Gaestel M: Regulation of Hsp27 oligomerization,
chaperone function, and protective activity against oxidative
stress/tumor necrosis factor α by phosphorylation. J Biol Chem.
274:18947–18956. 1999.PubMed/NCBI
|
6.
|
Nijweide PJ, Burger EH and Feyen JH: Cells
of bone: proliferation, differentiation, and hormonal regulation.
Physiol Rev. 66:855–886. 1986.PubMed/NCBI
|
7.
|
Shakoori AR, Oberdorf AM, Owen TA, Weber
LA, Hickey E, Stein JL, Lian JB and Stein GS: Expression of heat
shock genes during differentiation of mammalian osteoblasts and
promyelocytic leukemia cells. J Cell Biochem. 48:277–287. 1992.
View Article : Google Scholar : PubMed/NCBI
|
8.
|
Cooper LF and Uoshima K: Differential
estrogenic regulation of small M(r) heat shock protein expression
in osteoblasts. J Biol Chem. 269:7869–7873. 1994.PubMed/NCBI
|
9.
|
Morgan EF, Barnes GL and Einhorn TA: The
bone organ system: Form and function. Osteoporosis. 3rd edition.
Marcus R, Feldman D, Nelson D and Rosen CJ: Elsevier Press; Boston:
pp. 3–25. 2008
|
10.
|
Hikiji H, Takato T, Shimizu T and Ishii S:
The roles of prostanoids, leukotrienes, and platelet-activating
factor in bone metabolism and disease. Prog Lipid Res. 47:107–126.
2008. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Tasaki Y, Takamori R and Koshihara Y:
Prostaglandin D2 metabolite stimulates collagen
synthesis by human osteoblasts during calcification.
Prostaglandins. 41:303–313. 1991.PubMed/NCBI
|
12.
|
Gallant MA, Samadfam R, Hackett JA,
Antoniou J, Parent JL and de Brum-Fernandes AJ: Production of
prostaglandin D(2) by human osteoblasts and modulation of
osteoprotegerin, RANKL, and cellular migration by DP and CRTH2
receptors. J Bone Miner Res. 20:672–681. 2005. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Tokuda H, Kozawa O, Harada A and Uematsu
T: Prostaglandin D2 induces interleukin-6 synthesis via
Ca2+ mobilization in osteoblasts: regulation of protein
kinase C. Prostaglandins Leukot Essent Fatty Acids. 61:189–194.
1999.
|
14.
|
Widmann C, Gibson S, Jarpe MB and Johnson
GJ: Mitogen-activated protein kinase: conservation of a
three-kinase module from yeast to human. Physiol Rev. 79:143–180.
1999.PubMed/NCBI
|
15.
|
Kozawa O, Otsuka T, Hatakeyama D, Niwa M,
Matsuno H, Ito H, Kato K, Matsui N and Uematsu T: Mechanism of
prostaglandin D2-stimulated heat shock protein 27
induction in osteoblasts. Cell Signal. 13:535–541. 2001.PubMed/NCBI
|
16.
|
Yoshida M, Niwa M, Ishisaki A, Hirade K,
Ito H, Shimizu K, Kato K and Kozawa O: Methotrexate enhances
prostaglandin D2-stimulated heat shock protein 27
induction in osteoblasts. Prostaglandins Leukot Essent Fatty Acids.
71:351–362. 2004.PubMed/NCBI
|
17.
|
Fukata Y, Amano M and Kaibuchi K:
Rho-Rho-kinase pathway in smooth muscle contraction and
cytoskeletal reorganization of non-muscle cells. Trends Pharmacol
Sci. 22:32–39. 2001. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Riento K and Ridley AJ: Rocks:
multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol.
4:446–456. 2003. View
Article : Google Scholar : PubMed/NCBI
|
19.
|
Shimokawa H and Rashid M: Development of
Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol
Sci. 28:296–302. 2007. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Windischhofer W, Zach D, Fauler G,
Raspotnig G, Kofeler H and Leis HJ: Involvement of Rho and p38 MAPK
in endothelin-1-induced expression of PGHS-2 mRNA in
osteoblast-like cells. J Bone Miner Res. 17:1774–1784. 2002.
View Article : Google Scholar : PubMed/NCBI
|
21.
|
Harmey D, Stenbeck G, Nobes CD, Lax AJ and
Grigoriadis AE: Regulation of osteoblast differentiation by
Pasteurella multocida toxin (PMT): a role for Rho GTPase in
bone formation. J Bone Miner Res. 19:661–670. 2004.
|
22.
|
Tokuda H, Takai S, Matsushima-Nishiwaki R,
Hanai Y, Adachi S, Minamitani C, Mizutani J, Otsuka T and Kozawa O:
Function of Rho-kinase in prostaglandin D2-induced
interleukin-6 synthesis in osteoblasts. Prostaglandins Leukot
Essent Fatty Acids. 79:41–46. 2008. View Article : Google Scholar
|
23.
|
Sudo H, Kodama H, Amagai Y, Yamamoto S and
Kasai S: In vitro differentiation and calcification in a new clonal
osteogenic cell line derived from newborn mouse calvaria. J Cell
Biol. 96:191–198. 1993. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Kozawa O, Suzuki A, Tokuda H and Uematsu
T: Prostaglandin F2α stimulates interleukin-6 synthesis
via activation of PKC in osteoblast-like cells. Am J Physiol.
272:E208–E211. 1997.PubMed/NCBI
|
25.
|
Kato K, Ito H, Hasegawa K, Inaguma Y,
Kozawa O and Asano T: Modulation of the stress-induced synthesis of
hsp27 and αB-crystallin by cyclic AMP in C6 rat glioma cells. J
Neurochem. 66:946–950. 1996.
|
26.
|
Laemmli UK: Cleavage of structural
proteins during the assembly of the head of bacteriophage T4.
Nature. 227:680–685. 1970. View
Article : Google Scholar : PubMed/NCBI
|