Experimental models and plant‑based therapy for experimental cerebral ischemia (Review)
- Authors:
- Nada M. Ezzelarab
- Naela Saleh
- Eman A. Khalil
- Ahmed Abdellatif
-
Affiliations: Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, Cairo 11835, Egypt, Department of Biology, School of Sciences and Engineering, The American University in Cairo, Cairo 11835, Egypt - Published online on: August 11, 2020 https://doi.org/10.3892/ijfn.2020.5
- Article Number: 5
-
Copyright: © Ezzelarab et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, et al: Heart disease and stroke statistics-2015 update: A report from the American Heart Association. Circulation. 131:e29–e322. 2015.PubMed/NCBI View Article : Google Scholar | |
Dong B, Yang Y, Zhang Z, Xie K, Su L and Yu Y: Hemopexin alleviates cognitive dysfunction after focal cerebral ischemia-reperfusion injury in rats. BMC Anesthesiol. 19(13)2019.PubMed/NCBI View Article : Google Scholar | |
Di Carlo A: Human and economic burden of stroke. Age Ageing. 38:4–5. 2009.PubMed/NCBI View Article : Google Scholar | |
Moher D, Liberati A, Tetzlaff J and Altman DG: Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann Intern Med. 151:264–269. 2009.PubMed/NCBI View Article : Google Scholar | |
Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, et al: The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 343(d5928)2011.PubMed/NCBI View Article : Google Scholar | |
Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM and Arumugam TV: Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener. 6(11)2011.PubMed/NCBI View Article : Google Scholar | |
O'Brien JT and Thomas A: Vascular dementia. Lancet. 386:1698–1706. 2015.PubMed/NCBI View Article : Google Scholar | |
Kalaria RN: Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer's disease. Acta Neuropathol. 131:659–685. 2016.PubMed/NCBI View Article : Google Scholar | |
Hainsworth AH and Markus HS: Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J Cereb Blood Flow Metab. 28:1877–1891. 2008.PubMed/NCBI View Article : Google Scholar | |
Bink DI, Ritz K, Aronica E, Van Der Weerd L and Daemen MJ: Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition. J Cereb Blood Flow Metab. 33:1666–1684. 2013.PubMed/NCBI View Article : Google Scholar | |
Gorelick PB, Counts SE and Nyenhuis D: Vascular cognitive impairment and dementia. Biochim Biophys Acta. 1862:860–868. 2016.PubMed/NCBI View Article : Google Scholar | |
Venkat P, Chopp M and Chen J: Models and mechanisms of vascular dementia. Exp Neurol. 272:97–108. 2015.PubMed/NCBI View Article : Google Scholar | |
Hanke T: Lessons from TGN1412. Lancet. 368:1569–1570; author reply 1570. 2006.PubMed/NCBI View Article : Google Scholar | |
Römer PS, Berr S, Avota E, Na SY, Battaglia M, ten Berge I, Einsele H and Hünig T: Preculture of PBMCs at high cell density increases sensitivity of T-cell responses, revealing cytokine release by CD28 superagonist TGN1412. Blood. 118:6772–6782. 2011.PubMed/NCBI View Article : Google Scholar | |
Holloway PM and Gavins FN: Modeling ischemic stroke in vitro: status quo and future perspectives. Stroke. 47:561–569. 2016.PubMed/NCBI View Article : Google Scholar | |
Cook DJ and Tymianski M: Nonhuman primate models of stroke for translational neuroprotection research. Neurotherapeutics. 9:371–379. 2012.PubMed/NCBI View Article : Google Scholar | |
Krafft PR, Bailey EL, Lekic T, Rolland WB, Altay O, Tang J, Wardlaw JM, Zhang JH and Sudlow CL: Etiology of stroke and choice of models. Int J Stroke. 7:398–406. 2012.PubMed/NCBI View Article : Google Scholar | |
Ahmad AS, Satriotomo I, Fazal J, Nadeau SE and Doré S: Considerations for the optimization of induced white matter injury preclinical models. Front Neurol. 6(172)2015.PubMed/NCBI View Article : Google Scholar | |
Edrissi H, Schock SC, Cadonic R, Hakim AM and Thompson CS: Cilostazol reduces blood brain barrier dysfunction, white matter lesion formation and motor deficits following chronic cerebral hypoperfusion. Brain Res. 1646:494–503. 2016.PubMed/NCBI View Article : Google Scholar | |
Shibata M, Ohtani R, Ihara M and Tomimoto H: White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke. 35:2598–2603. 2004.PubMed/NCBI View Article : Google Scholar | |
Hattori Y, Enmi J, Kitamura A, Yamamoto Y, Saito S, Takahashi Y, Iguchi S, Tsuji M, Yamahara K, Nagatsuka K, et al: A novel mouse model of subcortical infarcts with dementia. J Neurosci. 35:3915–3928. 2015.PubMed/NCBI View Article : Google Scholar | |
Chen A, Akinyemi RO, Hase Y, Firbank MJ, Ndung'u MN, Foster V, Craggs LJ, Washida K, Okamoto Y, Thomas AJ, et al: Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia. Brain. 139:242–258. 2015.PubMed/NCBI View Article : Google Scholar | |
McCabe C, Arroja MM, Reid E and Macrae IM: Animal models of ischaemic stroke and characterisation of the ischaemic penumbra. Neuropharmacology. 134:169–177. 2018.PubMed/NCBI View Article : Google Scholar | |
Traystman RJ: Animal models of focal and global cerebral ischemia. ILAR J. 44:85–95. 2003.PubMed/NCBI View Article : Google Scholar | |
Farkas E, Luiten PG and Bari F: Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev. 54:162–180. 2007.PubMed/NCBI View Article : Google Scholar | |
Nishio K, Ihara M, Yamasaki N, Kalaria RN, Maki T, Fujita Y, Ito H, Oishi N, Fukuyama H, Miyakawa T, et al: A mouse model characterizing features of vascular dementia with hippocampal atrophy. Stroke. 41:1278–1284. 2010.PubMed/NCBI View Article : Google Scholar | |
Stem Cell Therapies as an Emerging Paradigm in Stroke Participants: Stem cell therapies as an emerging paradigm in stroke (STEPS): Bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke 40: 510-515, 2009. | |
Savitz SI, Chopp M, Deans R, Carmichael S, Phinney D and Wechsler L: STEPS Participants: Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke. 42:825–829. 2011.PubMed/NCBI View Article : Google Scholar | |
Stroke Therapy Academic Industry Roundtable (STAIR): Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30: 2752-2758, 1999. | |
Bacigaluppi M, Comi G and Hermann DM: Animal models of ischemic stroke. Part two: Modeling cerebral ischemia. Open Neurol J. 4:34–38. 2010.PubMed/NCBI View Article : Google Scholar | |
Marshall J, Ridley R, Baker H, Hall L, Carpenter T and Wood N: Serial MRI, functional recovery, and long-term infarct maturation in a non-human primate model of stroke. Brain Res Bull. 61:577–585. 2003.PubMed/NCBI View Article : Google Scholar | |
Cook DJ, Teves L and Tymianski M: Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature. 483:213–217. 2012.PubMed/NCBI View Article : Google Scholar | |
Howells DW, Porritt MJ, Rewell SS, O'collins V, Sena ES, Van Der Worp HB, Traystman RJ and Macleod MR: Different strokes for different folks: The rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab. 30:1412–1431. 2010.PubMed/NCBI View Article : Google Scholar | |
Macrae I: Preclinical stroke research-advantages and disadvantages of the most common rodent models of focal ischaemia. Br J Pharmacol. 164:1062–1078. 2011.PubMed/NCBI View Article : Google Scholar | |
Canazza A, Minati L, Boffano C, Parati E and Binks S: Experimental models of brain ischemia: A review of techniques, magnetic resonance imaging, and investigational cell-based therapies. Front Neurol. 5(19)2014.PubMed/NCBI View Article : Google Scholar | |
Madigan JB, Wilcock DM and Hainsworth AH: Vascular contributions to cognitive impairment and dementia: Topical review of animal models. Stroke. 47:1953–1959. 2016.PubMed/NCBI View Article : Google Scholar | |
Ndung'u M, Härtig W, Wegner F, Mwenda J, Low R, Akinyemi R and Kalaria RN: Cerebral amyloid β(42) deposits and microvascular pathology in ageing baboons. Neuropathol Appl Neurobiol. 38:487–499. 2012.PubMed/NCBI View Article : Google Scholar | |
Durukan A and Tatlisumak T: Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 87:179–197. 2007.PubMed/NCBI View Article : Google Scholar | |
Liu F and McCullough LD: Middle cerebral artery occlusion model in rodents: Methods and potential pitfalls. J Biomed Biotechnol. 2011(464701)2011.PubMed/NCBI View Article : Google Scholar | |
Kraft P, Göb E, Schuhmann MK, Göbel K, Deppermann C, Thielmann I, Herrmann AM, Lorenz K, Brede M, Stoll G, et al: FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke. 44:3202–3210. 2013.PubMed/NCBI View Article : Google Scholar | |
Göb E, Reymann S, Langhauser F, Schuhmann MK, Kraft P, Thielmann I, Göbel K, Brede M, Homola G, Solymosi L, et al: Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation. Ann Neurol. 77:784–803. 2015.PubMed/NCBI View Article : Google Scholar | |
Dirnagl U and Macleod MR: Stroke research at a road block: The streets from adversity should be paved with meta-analysis and good laboratory practice. Br J Pharmacol. 157:1154–1156. 2009.PubMed/NCBI View Article : Google Scholar | |
Yanamoto H, Nagata I, Niitsu Y, Xue JH, Zhang Z and Kikuchi H: Evaluation of MCAO stroke models in normotensive rats: Standardized neocortical infarction by the 3VO technique. Exp Neurol. 182:261–274. 2003.PubMed/NCBI View Article : Google Scholar | |
Buchan AM, Xue D and Slivka A: A new model of temporary focal neocortical ischemia in the rat. Stroke. 23:273–279. 1992.PubMed/NCBI View Article : Google Scholar | |
Sugimori H, Yao H, Ooboshi H, Ibayashi S and Iida M: Krypton laser-induced photothrombotic distal middle cerebral artery occlusion without craniectomy in mice. Brain Res Brain Res Protoc. 13:189–196. 2004.PubMed/NCBI View Article : Google Scholar | |
Bogousslavsky J, Van Melle G and Regli F: The Lausanne Stroke Registry: Analysis of 1,000 consecutive patients with first stroke. Stroke. 19:1083–1092. 1988.PubMed/NCBI View Article : Google Scholar | |
Koizumi J, Yoshida Y, Nakazawa T and Ooneda G: Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke. 8:1–8. 1986. | |
Smith HK, Russell JM, Granger DN and Gavins FN: Critical differences between two classical surgical approaches for middle cerebral artery occlusion-induced stroke in mice. J Neurosci Methods. 249:99–105. 2015.PubMed/NCBI View Article : Google Scholar | |
Chiang T, Messing RO and Chou WH: Mouse model of middle cerebral artery occlusion. J Vis Exp. (e2761)2011.PubMed/NCBI View Article : Google Scholar | |
Garcia JH, Liu KF and Ho KL: Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke. 26:636–643, Discussion 643. 1995.PubMed/NCBI View Article : Google Scholar | |
Kuraoka M, Furuta T, Matsuwaki T, Omatsu T, Ishii Y, Kyuwa S and Yoshikawa Y: Direct experimental occlusion of the distal middle cerebral artery induces high reproducibility of brain ischemia in mice. Exp Anim. 58:19–29. 2009.PubMed/NCBI View Article : Google Scholar | |
Duverger D and MacKenzie ET: The quantification of cerebral infarction following focal ischemia in the rat: Influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab. 8:449–461. 1988.PubMed/NCBI View Article : Google Scholar | |
Belayev L, Alonso OF, Busto R, Zhao W and Ginsberg MD: Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke. 27:1616–1623. 1996.PubMed/NCBI View Article : Google Scholar | |
Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A and Reulen HJ: A critical reevaluation of the intraluminal thread model of focal cerebral ischemia. Stroke. 29:2162–2170. 1998.PubMed/NCBI View Article : Google Scholar | |
Li F, Omae T and Fisher M: Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke. 30:2464–2470, Discussion 2470-2471. 1999.PubMed/NCBI View Article : Google Scholar | |
Barber PA, Hoyte L, Colbourne F and Buchan AM: Temperature-regulated model of focal ischemia in the mouse: A study with histopathological and behavioral outcomes. Stroke. 35:1720–1725. 2004.PubMed/NCBI View Article : Google Scholar | |
Hossmann KA: The two pathophysiologies of focal brain ischemia: Implications for translational stroke research. J Cereb Blood Flow Metab. 32:1310–1316. 2012.PubMed/NCBI View Article : Google Scholar | |
Demarin V, Zavoreo I and Kes VB: Carotid artery disease and cognitive impairment. J Neurol Sci. 322:107–111. 2012.PubMed/NCBI View Article : Google Scholar | |
de Bruijn RF, Heeringa J, Wolters FJ, Franco OH, Stricker BH, Hofman A, Koudstaal PJ and Ikram MA: Association between atrial fibrillation and dementia in the general population. JAMA Neurol. 72:1288–1294. 2015.PubMed/NCBI View Article : Google Scholar | |
Adelborg K, Szépligeti S, Sundbøll J, Horváth-Puhó E, Henderson VW, Ording A, Pedersen L and Sørensen HT: Risk of stroke in patients with heart failure: A population-based 30-year cohort study. Stroke. 48:1161–1168. 2017.PubMed/NCBI View Article : Google Scholar | |
Shibata M, Yamasaki N, Miyakawa T, Kalaria RN, Fujita Y, Ohtani R, Ihara M, Takahashi R and Tomimoto H: Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke. 38:2826–2832. 2007.PubMed/NCBI View Article : Google Scholar | |
Ihara M, Taguchi A, Maki T, Washida K and Tomimoto H: A mouse model of chronic cerebral hypoperfusion characterizing features of vascular cognitive impairment. Methods Mol Biol. 1135:95–102. 2014.PubMed/NCBI View Article : Google Scholar | |
Washida K, Hattori Y and Ihara M: Animal models of chronic cerebral hypoperfusion: From mouse to primate. Int J Mol Sci. 20(6176)2019.PubMed/NCBI View Article : Google Scholar | |
Sommer CJ: Ischemic stroke: Experimental models and reality. Acta Neuropathol. 133:245–261. 2017.PubMed/NCBI View Article : Google Scholar | |
Orset C, Macrez R, Young AR, Panthou D, Angles-Cano E, Maubert E, Agin V and Vivien D: Mouse model of in situ thromboembolic stroke and reperfusion. Stroke. 38:2771–2778. 2007.PubMed/NCBI View Article : Google Scholar | |
Smith WS, Sung G, Starkman S, Saver JL, Kidwell CS, Gobin YP, Lutsep HL, Nesbit GM, Grobelny T, Rymer MM, et al: Safety and efficacy of mechanical embolectomy in acute ischemic stroke: Results of the MERCI trial. Stroke. 36:1432–1438. 2005.PubMed/NCBI View Article : Google Scholar | |
Niessen F, Hilger T, Hoehn M and Hossmann KA: Differences in clot preparation determine outcome of recombinant tissue plasminogen activator treatment in experimental thromboembolic stroke. Stroke. 34:2019–2024. 2003.PubMed/NCBI View Article : Google Scholar | |
Walberer M and Rueger MA: The macrosphere model-an embolic stroke model for studying the pathophysiology of focal cerebral ischemia in a translational approach. Ann Transl Med. 3(123)2015.PubMed/NCBI View Article : Google Scholar | |
Macrae IM, Robinson MJ, Graham DI, Reid JL and McCulloch J: Endothelin-1-induced reductions in cerebral blood flow: Dose dependency, time course, and neuropathological consequences. J Cereb Blood Flow Metab. 13:276–284. 1993.PubMed/NCBI View Article : Google Scholar | |
Bogaert L, Scheller D, Moonen J, Sarre S, Smolders I, Ebinger G and Michotte Y: Neurochemical changes and laser Doppler flowmetry in the endothelin-1 rat model for focal cerebral ischemia. Brain Res. 887:266–275. 2000.PubMed/NCBI View Article : Google Scholar | |
Biernaskie J, Corbett D, Peeling J, Wells J and Lei H: A serial MR study of cerebral blood flow changes and lesion development following endothelin-1-induced ischemia in rats. Magn Reson Med. 46:827–830. 2001.PubMed/NCBI View Article : Google Scholar | |
Hughes PM, Anthony DC, Ruddin M, Botham MS, Rankine EL, Sablone M, Baumann D, Mir AK and Perry VH: Focal lesions in the rat central nervous system induced by endothelin-1. J Neuropathol Exp Neurol. 62:1276–1286. 2003.PubMed/NCBI View Article : Google Scholar | |
Horie N, Maag AL, Hamilton SA, Shichinohe H, Bliss TM and Steinberg GK: Mouse model of focal cerebral ischemia using endothelin-1. J Neurosci Methods. 173:286–290. 2008.PubMed/NCBI View Article : Google Scholar | |
Ansari S, Azari H, Caldwell KJ, Regenhardt RW, Hedna VS, Waters MF, Hoh BL and Mecca AP: Endothelin-1 induced middle cerebral artery occlusion model for ischemic stroke with laser Doppler flowmetry guidance in rat. J Vis Exp. (50014)2013.PubMed/NCBI View Article : Google Scholar | |
Kim GW, Sugawara T and Chan PH: Involvement of oxidative stress and caspase-3 in cortical infarction after photothrombotic ischemia in mice. J Cereb Blood Flow Metab. 20:1690–1701. 2000.PubMed/NCBI View Article : Google Scholar | |
Kleinschnitz C, Braeuninger S, Pham M, Austinat M, Nölte I, Renné T, Nieswandt B, Bendszus M and Stoll G: Blocking of platelets or intrinsic coagulation pathway-driven thrombosis does not prevent cerebral infarctions induced by photothrombosis. Stroke. 39:1262–1268. 2008.PubMed/NCBI View Article : Google Scholar | |
Watson BD, Dietrich WD, Busto R, Wachtel MS and Ginsberg MD: Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol. 17:497–504. 1985.PubMed/NCBI View Article : Google Scholar | |
Dietrich WD, Ginsberg MD, Busto R and Watson BD: Photochemically induced cortical infarction in the rat. 1. Time course of hemodynamic consequences. J Cereb Blood Flow Metab. 6:184–194. 1986.PubMed/NCBI View Article : Google Scholar | |
Lee VM, Burdett NG, Carpenter A, Hall LD, Pambakian PS, Patel S, Wood NI and James MF: Evolution of photochemically induced focal cerebral ischemia in the rat. Magnetic resonance imaging and histology. Stroke. 27:2110–2119. 1996.PubMed/NCBI View Article : Google Scholar | |
Provenzale JM, Jahan R, Naidich TP and Fox AJ: Assessment of the patient with hyperacute stroke: Imaging and therapy. Radiology. 229:347–359. 2003.PubMed/NCBI View Article : Google Scholar | |
DeVries AC, Nelson RJ, Traystman RJ and Hurn PD: Cognitive and behavioral assessment in experimental stroke research: Will it prove useful? Neurosci Biobehav Rev. 25:325–342. 2001.PubMed/NCBI View Article : Google Scholar | |
Shiotsuki H, Yoshimi K, Shimo Y, Funayama M, Takamatsu Y, Ikeda K, Takahashi R, Kitazawa S and Hattori N: A rotarod test for evaluation of motor skill learning. J Neurosci Methods. 189:180–185. 2010.PubMed/NCBI View Article : Google Scholar | |
Balkaya M, Kröber JM, Rex A and Endres M: Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow Metab. 33:330–338. 2013.PubMed/NCBI View Article : Google Scholar | |
Lee JK, Park MS, Kim YS, Moon KS, Joo SP, Kim TS and Kim SH: Photochemically induced cerebral ischemia in a mouse model. Surg Neurol. 67:620–625. 2007.PubMed/NCBI View Article : Google Scholar | |
De Luca A, Tinsley J, Aartsma-Rus A, van Putten M, Nagaraju K, de La Porte S, Dubach-Powell J and Carlson G: Use of grip strength meter to assess the limb strength of mdx mice. SOP DMD_M.2. 2008. | |
Ishrat T, Sayeed I, Atif F and Stein DG: Effects of progesterone administration on infarct volume and functional deficits following permanent focal cerebral ischemia in rats. Brain Res. 1257:94–101. 2009.PubMed/NCBI View Article : Google Scholar | |
Hoffman E and Winder SJ: A modified wire hanging apparatus for small animal muscle function testing. PLoS Curr 8. (ecurrents.md.1e2bec4e78697b7b0ff80ea25a1d38be)2016.PubMed/NCBI View Article : Google Scholar | |
Gerlai R, Thibodeaux H, Palmer JT, van Lookeren Campagne M and Van Bruggen N: Transient focal cerebral ischemia induces sensorimotor deficits in mice. Behav Brain Res. 108:63–71. 2000.PubMed/NCBI View Article : Google Scholar | |
Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P and Freret T: The adhesive removal test: A sensitive method to assess sensorimotor deficits in mice. Nat Protoc. 4:1560–1564. 2009.PubMed/NCBI View Article : Google Scholar | |
Seibenhener ML and Wooten MC: Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. (e52434)2015.PubMed/NCBI View Article : Google Scholar | |
Gould TD, Dao DT and Kovacsics CE: The open field test. Mood and anxiety related phenotypes in mice. Springer, pp1-20, 2009. | |
Vorhees CV and Williams MT: Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 1:848–858. 2006.PubMed/NCBI View Article : Google Scholar | |
Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J and Chopp M: Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 32:2682–2688. 2001.PubMed/NCBI View Article : Google Scholar | |
Clark WM, Lessov NS, Dixon MP and Eckenstein F: Monofilament intraluminal middle cerebral artery occlusion in the mouse. Neurol Res. 19:641–648. 1997.PubMed/NCBI View Article : Google Scholar | |
Niizuma K, Endo H and Chan PH: Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem. 109:133–138. 2009.PubMed/NCBI View Article : Google Scholar | |
Bora KS and Sharma A: Neuroprotective effect of Artemisia absinthium L. on focal ischemia and reperfusion-induced cerebral injury. J Ethnopharmacol. 129:403–409. 2010.PubMed/NCBI View Article : Google Scholar | |
Wang D, Yuan X, Liu T, Liu L, Hu Y, Wang Z and Zheng Q: Neuroprotective activity of lavender oil on transient focal cerebral ischemia in mice. Molecules. 17:9803–9817. 2012.PubMed/NCBI View Article : Google Scholar | |
Dai J, Qiu YM, Ma ZW, Yan GF, Zhou J, Li SQ, Wu H, Jin YC and Zhang XH: Neuroprotective effect of baicalin on focal cerebral ischemia in rats. Neural Regen Res. 13:2129–2133. 2018.PubMed/NCBI View Article : Google Scholar | |
Cao ZQ, Quan W, Hou SX, Guo C, Ma SB, Zhang W and Li X: The natural therapeutic magnesium lithospermate B potently provides neuroprotective effects on cerebral ischemia/reperfusion injury in rats. J Ethnopharmacol. 162:191–198. 2015.PubMed/NCBI View Article : Google Scholar | |
Pengyue Z, Tao G, Hongyun H, Liqiang Y and Yihao D: Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra. Biomed Pharmacother. 90:69–76. 2017.PubMed/NCBI View Article : Google Scholar | |
Guo H, Hu LM, Wang SX, Wang YL, Shi F, Li H, Liu Y, Kang LY and Gao XM: Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity. Chin J Physiol. 54:399–405. 2011.PubMed/NCBI View Article : Google Scholar | |
Gaire BP and Kim HJ: Neuroprotective effects of Fructus Chebulae extracts on experimental models of cerebral ischemia. J Tradit Chin Med. 34:69–75. 2014.PubMed/NCBI View Article : Google Scholar | |
Lee TH, Jung CH and Lee DH: Neuroprotective effects of Schisandrin B against transient focal cerebral ischemia in Sprague-Dawley rats. Food Chem Toxicol. 50:4239–4245. 2012.PubMed/NCBI View Article : Google Scholar | |
He B, Chen P, Yang J, Yun Y, Zhang X, Yang R and Shen Z: Neuroprotective effect of 20(R)-ginsenoside Rg(3) against transient focal cerebral ischemia in rats. Neurosci Lett. 526:106–111. 2012.PubMed/NCBI View Article : Google Scholar | |
Liu L, Vollmer MK, Fernandez VM, Dweik Y, Kim H and Doré SJ: Korean red ginseng pretreatment protects against long-term sensorimotor deficits after ischemic stroke likely through Nrf2. Front Cell Neurosci. 12(74)2018.PubMed/NCBI View Article : Google Scholar | |
Dong X, Zheng L, Lu S and Yang YJ: Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: Involvement of anti-oxidant signaling. Geriatr Gerontol Int. 17:338–345. 2017.PubMed/NCBI View Article : Google Scholar | |
Chen LM, Zhou XM, Cao YL and Hu WX: Neuroprotection of ginsenoside Re in cerebral ischemia-reperfusion injury in rats. J Asian Nat Prod Res. 10:439–445. 2008.PubMed/NCBI View Article : Google Scholar | |
Duan W, Wang L, Lv J, Gao K, Lu Y, Qin S, Ma X, Li J and Ge X: Metabolomics study on the effects of salvianolic acid B and borneol for treating cerebral ischemia in rats by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Rejuvenation Res. 22:313–324. 2019.PubMed/NCBI View Article : Google Scholar | |
Hong JT, Ryu SR, Kim HJ, Lee JK, Lee SH, Kim DB, Yun YP, Ryu JH, Lee BM and Kim PY: Neuroprotective effect of green tea extract in experimental ischemia-reperfusion brain injury. Brain Res Bull. 53:743–749. 2000.PubMed/NCBI View Article : Google Scholar | |
Graham HN: Green tea composition, consumption, and polyphenol chemistry. Prev Med. 21:334–350. 1992.PubMed/NCBI View Article : Google Scholar | |
Mukherjee PK, Ahamed KN, Kumar V, Mukherjee K and Houghton PJ: Protective effect of biflavones from Araucaria bidwillii Hook in rat cerebral ischemia/reperfusion induced oxidative stress. Behav Brain Res. 178:221–228. 2007.PubMed/NCBI View Article : Google Scholar | |
Nazam Ansari M, Bhandari U, Islam F and Tripathi CD: Evaluation of antioxidant and neuroprotective effect of ethanolic extract of Embelia ribes Burm in focal cerebral ischemia/reperfusion-induced oxidative stress in rats. Fundam Clin Pharmacol. 22:305–314. 2008.PubMed/NCBI View Article : Google Scholar | |
Ferreira Ede O, Fernandes MY, Lima NM, Neves KR, Carmo MR, Lima FA, Fonteles AA, Menezes AP and Andrade GM: Neuroinflammatory response to experimental stroke is inhibited by eriodictyol. Behav Brain Res. 312:321–332. 2016.PubMed/NCBI View Article : Google Scholar | |
Lee D, Park J, Yoon J, Kim MY, Choi HY and Kim HJ: Neuroprotective effects of Eleutherococcus senticosus bark on transient global cerebral ischemia in rats. J Ethnopharmacol. 139:6–11. 2012.PubMed/NCBI View Article : Google Scholar | |
Luo L, Kim SW, Lee HK, Kim ID, Lee H and Lee JK: Anti-Zn2+-toxicity of 4-hydroxybenzyl alcohol in astrocytes and neurons contribute to a robust neuroprotective effects in the postischemic brain. Cell Mol Neurobiol. 38:615–626. 2018.PubMed/NCBI View Article : Google Scholar | |
Akhtar M, Maikiyo AM, Najmi AK, Khanam R, Mujeeb M and Aqil M: Neuroprotective effects of chloroform and petroleum ether extracts of Nigella sativa seeds in stroke model of rat. J Pharm Bioallied Sci. 5(119)2013.PubMed/NCBI View Article : Google Scholar | |
Wang C, Zhang D, Ma H and Liu JJ: Neuroprotective effects of emodin-8-O-beta-d-glucoside in vivo and in vitro. Eur J Pharmacol. 577:58–63. 2007.PubMed/NCBI View Article : Google Scholar | |
Guo C, Tong L, Xi M, Yang H, Dong H and Wen AJ: Neuroprotective effect of calycosin on cerebral ischemia and reperfusion injury in rats. Cell Physiol Biochem. 144:768–774. 2012.PubMed/NCBI View Article : Google Scholar | |
Chang Y, Hsieh CY, Peng ZA, Yen TL, Hsiao G, Chou DS, Chen CM and Sheu JR: Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats. J Biomed Sci. 16(9)2009.PubMed/NCBI View Article : Google Scholar | |
Meng X, Xie W, Xu Q, Liang T, Xu X, Sun G and Sun X: Neuroprotective effects of radix scrophulariae on cerebral ischemia and reperfusion injury via MAPK pathways. Molecules. 23(2401)2018.PubMed/NCBI View Article : Google Scholar | |
Kaneko Y, Eve DJ, Yu S, Shojo H, Bae EC, Park DH, Roschek B Jr, Alberte RS, Sanberg PR, Sanberg CD, et al: Acute treatment with herbal extracts provides neuroprotective benefits in in vitro and in vivo stroke models, characterized by reduced ischemic cell death and maintenance of motor and neurological functions. Cell Med. 1:137–142. 2010.PubMed/NCBI View Article : Google Scholar | |
Guo C, Yin Y, Duan J, Zhu Y, Yan J, Wei G, Guan Y, Wu X, Wang Y, Xi M and Wen A: Neuroprotective effect and underlying mechanism of sodium danshensu [3-(3,4-dihydroxyphenyl) lactic acid from Radix and Rhizoma Salviae miltiorrhizae=Danshen] against cerebral ischemia and reperfusion injury in rats. Phytomedicine. 22:283–289. 2015.PubMed/NCBI View Article : Google Scholar | |
Lam BY, Lo AC, Sun X, Luo HW, Chung SK and Sucher NJ: Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice. Phytomedicine. 10:286–291. 2003.PubMed/NCBI View Article : Google Scholar | |
Cui L, Zhang X, Yang R, Wang L, Liu L, Li M and Du W: Neuroprotection and underlying mechanisms of oxymatrine in cerebral ischemia of rats. Neurol Res. 33:319–324. 2011.PubMed/NCBI View Article : Google Scholar | |
Park S, Nam K, Lee H, Cho EY, Koo U and Mar W: Neuroprotective effects of an alkaloid-free ethyl acetate extract from the root of Sophora flavescens Ait. against focal cerebral ischemia in rats. Phytomedicine. 16:1042–1051. 2009.PubMed/NCBI View Article : Google Scholar | |
Li W, Yang Y, Hu Z, Ling S and Fang M: Neuroprotective effects of DAHP and Triptolide in focal cerebral ischemia via apoptosis inhibition and PI3K/Akt/mTOR pathway activation. Front Neuroanat. 9(48)2015.PubMed/NCBI View Article : Google Scholar | |
Lee HF, Lee TS and Kou YR: Anti-inflammatory and neuroprotective effects of triptolide on traumatic brain injury in rats. Respir Physiol Neurobiol. 182:1–8. 2012.PubMed/NCBI View Article : Google Scholar | |
Gupta S and Gupta YK: Combination of Zizyphus jujuba and silymarin showed better neuroprotective effect as compared to single agent in MCAo-induced focal cerebral ischemia in rats. J Ethnopharmacol. 197:118–127. 2017.PubMed/NCBI View Article : Google Scholar | |
Chen JH, Kuo HC, Lee KF and Tsai TH: Magnolol protects neurons against ischemia injury via the downregulation of p38/MAPK, CHOP and nitrotyrosine. Toxicol Appl Pharmacol. 279:294–302. 2014.PubMed/NCBI View Article : Google Scholar | |
Gong J, Sun F, Li Y, Zhou X, Duan Z, Duan F, Zhao L, Chen H, Qi S and Shen J: Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway. Neuropharmacology. 91:123–134. 2015.PubMed/NCBI View Article : Google Scholar | |
Bora KS, Arora S and Shri R: Role of Ocimum basilicum L. in prevention of ischemia and reperfusion-induced cerebral damage, and motor dysfunctions in mice brain. J Ethnopharmacol. 137:1360–1365. 2011.PubMed/NCBI View Article : Google Scholar | |
Dringen R: Metabolism and functions of glutathione in brain. Prog Neurobiol. 62:649–671. 2000.PubMed/NCBI View Article : Google Scholar | |
Siddiqui BS, Aslam H, Ali ST, Begu S and Khatoon N: Two new triterpenoids and a steroidal glycoside from the aerial parts of Ocimum basilicum. Chem Pharm Bull (Tokyo). 55:516–519. 2007.PubMed/NCBI View Article : Google Scholar | |
Yanpallewar S, Rai S, Kumar M and Acharya SB: Evaluation of antioxidant and neuroprotective effect of Ocimum sanctum on transient cerebral ischemia and long-term cerebral hypoperfusion. Pharmacol Biochem Behav. 79:155–164. 2004.PubMed/NCBI View Article : Google Scholar | |
Fki I, Sahnoun Z and Sayadi S: Hypocholesterolemic effects of phenolic extracts and purified hydroxytyrosol recovered from olive mill wastewater in rats fed a cholesterol-rich diet. J Agric Food Chem. 55:624–631. 2007.PubMed/NCBI View Article : Google Scholar | |
Mohagheghi F, Bigdeli MR, Rasoulian B, Zeinanloo AA and Khoshbaten A: Dietary virgin olive oil reduces blood brain barrier permeability, brain edema, and brain injury in rats subjected to ischemia-reperfusion. ScientificWorldJournal. 10:180–191. 2010.PubMed/NCBI View Article : Google Scholar | |
Rabiei Z, Bigdeli MR and Rasoulian B: Neuroprotection of dietary virgin olive oil on brain lipidomics during stroke. Curr Neurovasc Res. 10:231–237. 2013.PubMed/NCBI View Article : Google Scholar | |
Bayat M, Azami Tameh A, Hossein Ghahremani M, Akbari M, Mehr SE, Khanavi M and Hassanzadeh G: Neuroprotective properties of Melissa officinalis after hypoxic-ischemic injury both in vitro and in vivo. Daru. 20(42)2012.PubMed/NCBI View Article : Google Scholar | |
Rabiei Z and Rafieian-Kopaei M: Neuroprotective effect of pretreatment with Lavandula officinalis ethanolic extract on blood-brain barrier permeability in a rat stroke model. Asian Pac J Trop Med. 7S1:S421–S426. 2014.PubMed/NCBI View Article : Google Scholar | |
Cao Y, Maoa X, Sun C, Zheng P, Gao J, Wang X, Min D, Sun H, Xie N and Cai J: Baicalin attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-oxidative and anti-apoptotic pathways. Brain Res Bull. 85:396–402. 2011.PubMed/NCBI View Article : Google Scholar | |
Han BH, D'Costa A, Back SA, Parsadanian M, Patel S, Shah AR, Gidday JM, Srinivasan A, Deshmukh M and Holtzman DM: BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol Dis. 7:38–53. 2000.PubMed/NCBI View Article : Google Scholar | |
Zhang ZJ, Li P, Wang Z, Li PT, Zhang WS, Sun ZH, Zhang XJ and Wang YY: A comparative study on the individual and combined effects of baicalin and jasminoidin on focal cerebral ischemia-reperfusion injury. Brain Res. 1123:188–195. 2006.PubMed/NCBI View Article : Google Scholar | |
Kim HJ, Lee SR and Moon KD: Ether fraction of methanol extracts of Gastrodia elata, medicinal herb protects against neuronal cell damage after transient global ischemia in gerbils. Phytother Res. 17:909–912. 2003.PubMed/NCBI View Article : Google Scholar | |
Yu SJ, Kim JR, Lee CK, Han JE, Lee JH, Kim HS, Hong JH and Kang SG: Gastrodia elata blume and an active component, p-hydroxybenzyl alcohol reduce focal ischemic brain injury through antioxidant related gene expressions. Biol Pharm Bull. 28:1016–1020. 2005.PubMed/NCBI View Article : Google Scholar | |
Joyeux M, Lobstein A, Anton R and Mortier F: Comparative antilipoperoxidant, antinecrotic and scavenging properties of terpenes and biflavones from Ginkgo and some flavonoids. Planta Med. 61:126–129. 1995.PubMed/NCBI View Article : Google Scholar | |
Calapai G, Crupi A, Firenzuoli F, Marciano MC, Squadrito F, Inferrera G, Parisi A, Rizzo A, Crisafulli C, Fiore A and Caputi AP: Neuroprotective effects of Ginkgo biloba extract in brain ischemia are mediated by inhibition of nitric oxide synthesis. Life Sci. 67:2673–2683. 2000.PubMed/NCBI View Article : Google Scholar | |
Yan XB, Wang SS, Hou HL, Ji R and Zhou JN: Lithium improves the behavioral disorder in rats subjected to transient global cerebral ischemia. Behav Brain Res. 177:282–289. 2007.PubMed/NCBI View Article : Google Scholar |