1
|
Yadav M, Jain S, Bhardwaj A, Nagpal R,
Puniya M, Tomar R, Singh V, Parkash O, Prasad GB, Marotta F and
Yadav H: Biological and medicinal properties of grapes and their
bioactive constituents: An update. J Med Food. 12:473–484.
2009.PubMed/NCBI View Article : Google Scholar
|
2
|
Pandey KB and Rizvi SI: Role of red grape
polyphenols as antidiabetic agents. Integr Med Res. 3:119–125.
2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Renaud S and de Lorgeril M: Wine, alcohol,
platelets, and the French paradox for coronary heart disease.
Lancet. 339:1523–1526. 1992.PubMed/NCBI View Article : Google Scholar
|
4
|
Vogt T: Phenylpropanoid biosynthesis. Mol
Plant. 3:2–20. 2010.PubMed/NCBI View Article : Google Scholar
|
5
|
Graf BA, Milbury PE and Blumberg JB:
Flavonols, flavones, flavanones, and human health: Epidemiological
evidence. J Med Food. 8:281–290. 2005.PubMed/NCBI View Article : Google Scholar
|
6
|
Fresco P, Borges F, Marques MPM and Diniz
C: The anticancer properties of dietary polyphenols and its
relation with apoptosis. Curr Pharm Des. 16:114–134.
2010.PubMed/NCBI View Article : Google Scholar
|
7
|
Hendric AB: Flavonoid-membrane
interactions: Possible consequences for biological effects of some
polyphenolic compounds. Acta Pharmacol Sin. 27:27–40.
2006.PubMed/NCBI View Article : Google Scholar
|
8
|
Ali K, Maltese F, Choi YH and Verpoorte R:
Metabolic constituents of grapevine and grape-derived products.
Phytochem Rev. 9:357–378. 2010.PubMed/NCBI View Article : Google Scholar
|
9
|
Riedel H, Thaw Saw NMM, Akumo DN, Kütük O
and Smetanska I: Wine as food and medicine. In: Scientific, Health
and Social Aspects of the Food Industry. Valdez B (ed.) IntechOpen:
399-418, 2012.
|
10
|
Alonso AM, Guillén DA, Barroso CG, Puertas
B and García A: Determination of antioxidant activity of wine
byproducts and its correlation with polyphenolic content. J Agric
Food Chem. 50:5832–5836. 2002.PubMed/NCBI View Article : Google Scholar
|
11
|
Somers TC and Vérette E: Phenolic
composition of natural wine types. In: Wine analysis. Linskens HF
and Jackson JF (eds.). 1st edition. Springer, Berlin, Heidelberg,
pp219-257, 1988.
|
12
|
Ruggieri L, Cadena E, Martínez-Blanco J,
Gasol CM, Rieradevall J, Gabarrell X, Gea T, Sort X and Sánchez A:
Recovery of organic wastes in the Spanish wine industry. Technical,
economic and environmental analyses of the composting process. J
Clean Prod. 17:830–838. 2009.
|
13
|
Torres JL, Varela B, García MT, Carilla J,
Matito C, Centelles JJ, Cascante M, Sort X and Bobet R:
Valorization of grape (Vitis vinifera) byproducts. Antioxidant and
biological properties of polyphenolic fractions differing in
procyanidin composition and flavonol content. J Agric Food Chem.
50:7548–7555. 2002.PubMed/NCBI View Article : Google Scholar
|
14
|
Villaescusa I, Fiol N, Martínez M,
Miralles N, Poch J and Serarols J: Removal of copper and nickel
ions from aqueous solutions by grape stalks wastes. Water Res.
38:992–1002. 2004.PubMed/NCBI View Article : Google Scholar
|
15
|
Kosińska-Cagnazzo A, Heeger A, Udrisard I,
Mathieu M, Bach B and Andlauer W: Phenolic compounds of grape stems
and their capacity to precipitate proteins from model wine. J Food
Sci Technol. 57:435–443. 2020.PubMed/NCBI View Article : Google Scholar
|
16
|
luga M and Mironeasa S: Potential of grape
byproducts as functional ingredients in baked goods and pasta.
Compr Rev Food Sci Food Saf. 19:2473–2505. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
García Lomillo J and González-SanJosé ML:
Applications of wine pomace in the food industry: Approaches and
functions. Compr Rev Food Sci Food Saf. 16:3–22. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Barros A, Gironés-Vilaplana A and Texeira
A: Grape stems as a source of bioactive compounds: Application
towards added-value commodities and significance for human health.
Phytochem Rev. 14:921–931. 2015.
|
19
|
Veskoukis AS, Vassi E, Poulas K,
Kokkinakis M, Asprodini E, Haroutounian S and Kouretas D: Grape
stem extracts from three native greek vine varieties exhibit strong
antioxidant and antimutagenic properties. Anticancer Res.
40:2025–2032. 2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Kerasioti E, Terzopoulou Z, Komini O,
Kafantaris I, Makri S, Stagos D, Gerasopoulos K, Anisimov NY,
Tsatsakis AM and Kouretas D: Tissue specific effects of feeds
supplemented with grape pomace or olive oil mill wastewater on
detoxification enzymes in sheep. Toxicol Rep. 4:364–372.
2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Kafantaris I, Stagos D, Kotsampasi B,
Hatzis A, Kypriotakis A, Gerasopoulos K, Makri S, Goutzourelas N,
Mitsagga C, Giavasis I, et al: Grape pomace improves performance,
antioxidant status, fecal microbiota and meat quality of piglets.
Animal. 12:246–255. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Veskoukis AS, Kyparos A, Nikolaidis MG,
Stagos D, Aligiannis N, Halabalaki M, Chronis K, Goutzourelas N,
Skaltsounis L and Kouretas D: The antioxidant effects of a
polyphenol-rich grape pomace extract in vitro do not correspond in
vivo using exercise as an oxidant stimulus. Oxid Med Cell Longev.
2012(185867)2012.PubMed/NCBI View Article : Google Scholar
|
23
|
Spanou C, Veskoukis AS, Stagos D, Liadaki
K, Anastasiadi M, Haroutounian SA, Tsouka M, Tzanakouli E and
Kouretas D: Effects of grape extracts on the in vitro activity of
enzymes involved in oxidative stress regulation. In Vivo.
25:657–662. 2011.PubMed/NCBI
|
24
|
Goutzourelas N, Stagos D, Spanidis Y,
Liosi M, Apostolou A, Priftis A, Haroutounian S, Spandidos DA,
Tsatsakis AM and Kouretas D: Polyphenolic composition of grape stem
extracts affects antioxidant activity in endothelial and muscle
cells. Mol Med Rep. 12:5846–5856. 2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Anastasiadi M, Pratsinis H and Kletsas D:
Grape stem extracts: Polyphenolic content and assessment of their
in vitro antioxidant properties. LWT-Food Sci Technol. 48:316–322.
2012.
|
26
|
León-González AJ, Auger C and Schini-Kerth
VB: Pro-oxidant activity of polyphenols and its implication on
cancer chemoprevention and chemotherapy. Biochem Pharmacol.
98:371–380. 2015.PubMed/NCBI View Article : Google Scholar
|
27
|
Eghbaliferiz S and Iranshahi M: Prooxidant
activity of polyphenols, flavonoids, anthocyanins and carotenoids:
Updated review of mechanisms and catalyzing metals. Phytother Res.
30:1379–1391. 2016.PubMed/NCBI View
Article : Google Scholar
|
28
|
Veskoukis AS, Kerasioti E, Priftis A,
Kouka P, Spanidis Y, Makri S and Kouretas D: A battery of
translational biomarkers for the assessment of the in vitro and in
vivo antioxidant action of plant polyphenolic compounds: The
biomarker issue. Curr Opin Toxicol. 13:99–109. 2019.
|
29
|
Bal-Price A and Coecke S: Guidance on good
cell culture practice (GCCP). Neuromethods. 56:1–25. 2011.
|
30
|
Kouka P, Tekos F, Valta K, Mavros P,
Veskoukis AS, Angelis A, Skaltsounis AL and Kouretas D: Οlive tree
blossom polyphenolic extracts exert antioxidant and antimutagenic
activities in vitro and in various cell lines. Oncol Rep.
42:2814–2825. 2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Pasini F, Chinnici F, Caboni MF and
Verardo V: Recovery of oligomeric proanthocyanidins and other
phenolic compounds with established bioactivity from grape seed
by-products. Molecules. 24(677)2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Ferri M, Bin S, Vallini V, Fava F,
Michelini E, Roda A, Minnucci G, Bucchi G and Tassoni A: Recovery
of polyphenols from red grape pomace and assessment of their
antioxidant and anti-cholesterol activities. N Biotechnol.
33:338–344. 2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Apostolou A, Stagos D, Galitsiou E, Spyrou
A, Haroutounian S, Portesis N, Trizoglou I, Wallace Hayes A,
Tsatsakis AM and Kouretas D: Assessment of polyphenolic content,
antioxidant activity, protection against ROS-induced DNA damage and
anticancer activity of Vitis vinifera stem extracts. Food Chem
Toxicol. 61:60–68. 2013.PubMed/NCBI View Article : Google Scholar
|
34
|
Quero J, Jiménez-Moreno N, Esparza I,
Osada J, Cerrada E, Ancín-Azpilicueta C and Rodríguez-Yoldi MJ:
Grape stem extracts with potential anticancer and antioxidant
properties. Antioxidants (Basel). 10(243)2021.PubMed/NCBI View Article : Google Scholar
|
35
|
Niedzwiecki A, Roomi MW, Kalinovsky T and
Rath M: Anticancer efficacy of polyphenols and their combinations.
Nutrients. 8(552)2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Chen HM, Wu YC, Chang FR, Hsu HK, Hsieh
YC, Chen CC and Yuan SS: Gallic acid, a major component of Toona
sinensis leaf extracts, contains a ROS mediated anticancer activity
in human prostate cancer cells. Cancer Lett. 286:161–171.
2009.PubMed/NCBI View Article : Google Scholar
|
37
|
Russell LH Jr, Mazzio E, Badisa RB, Zhu
ZP, Agharahimi M, Oriaku ET and Goodman CB: Autoxidation of gallic
acid induces ROS-dependent death in human prostate cancer LNCaP
cells. Anticancer Res. 32:1595–1602. 2012.PubMed/NCBI
|
38
|
Ward AB, Mir H, Kapur N, Gales DN,
Carriere PP and Singh S: Quercetin inhibits prostate cancer by
attenuating cell survival and inhibiting anti-apoptotic pathways.
World J Surg Oncol. 16(108)2018.PubMed/NCBI View Article : Google Scholar
|
39
|
Costea T, Nagy P, Ganea C, Szöllősi J and
Mocanu MM: Molecular mechanisms and bioavailability of polyphenols
in prostate cancer. Int J Mol Sci. 20(1062)2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Hashemzaei M, Delarami Far A, Yari A,
Heravi RE, Tabrizian K, Taghdisi SM, Sadegh SE, Tsarouhas K,
Kouretas D, Tzanakakis G, et al: Anticancer and apoptosis inducing
effects of quercetin in vitro and in vivo. Oncol Rep.
38:819–828. 2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Li F, Li S, Li HB, Deng GF, Ling WH, Wu S,
Xu XR and Chen F: Antiproliferative activity of peels, pulps and
seeds of 61 fruits. J Funct Foods. 5:1298–1309. 2013.
|
42
|
Li F, Li S, Li HB, Deng GF, Ling WH and Xu
XR: Antiproliferative activities of tea and herbal infusions. Food
Funct. 4:530–538. 2013.PubMed/NCBI View Article : Google Scholar
|
43
|
Shaw P and Chattopadhyay A: Nrf2-ARE
signaling in cellular protection: Mechanism of action and the
regulatory mechanisms. J Cell Physiol. 235:3119–3130.
2020.PubMed/NCBI View Article : Google Scholar
|
44
|
Hentze H, Künstle G, Volbracht C, Ertel W
and Wendel A: CD95-Mediated murine hepatic apoptosis requires an
intact glutathione status. Hepatology. 30:177–185. 1999.PubMed/NCBI View Article : Google Scholar
|
45
|
Hentze H, Schmitz I, Latta M, Krueger A,
Krammer PH and Wendel A: Glutathione dependence of caspase-8
activation at the death-inducing signaling complex. J Biol Chem.
277:5588–5595. 2002.PubMed/NCBI View Article : Google Scholar
|
46
|
Ghibelli L, Fanelli C, Rotilio G, Lafavia
E, Coppola S, Colussi C, Civitareale P and Ciriolo MR: Rescue of
cells from apoptosis by inhibition of active GSH extrusion. FASEB
J. 12:479–486. 1998.PubMed/NCBI View Article : Google Scholar
|
47
|
Pullar JM and Hampton MB:
Diphenyleneiodonium triggers the efflux of glutathione from
cultured cells. J Biol Chem. 277:19402–19407. 2002.PubMed/NCBI View Article : Google Scholar
|
48
|
Morales P and Haza AI: Selective apoptotic
effects of piceatannol and myricetin in human cancer cells. J Appl
Toxicol. 32:986–993. 2012.PubMed/NCBI View Article : Google Scholar
|
49
|
Udenigwe CC, Ramprasath VR, Aluko RE and
Jones PJ: Potential of resveratrol in anticancer and
anti-inflammatory therapy. Nutr Rev. 66:445–454. 2008.PubMed/NCBI View Article : Google Scholar
|
50
|
Ramos-Escudero F, Muñoz AM, Alvarado-Ortíz
C, Alvarado Á and Yáñez JA: Purple corn (Zea mays L.) phenolic
compounds profile and its assessment as an agent against oxidative
stress in isolated mouse organs. J Med Food. 15:206–215.
2012.PubMed/NCBI View Article : Google Scholar
|
51
|
Sarega N, Imam MU, Ooi DJ, Chan KW, Md Esa
N, Zawawi N and Ismail M: Phenolic rich extract from clinacanthus
nutans attenuates hyperlipidemia-associated oxidative stress in
rats. Oxid Med Cell Longev. 2016(4137908)2016.PubMed/NCBI View Article : Google Scholar
|
52
|
Galadari S, Rahman A, Pallichankandy S and
Thayyullathil F: Reactive oxygen species and cancer paradox: To
promote or to suppress? Free Radic Biol Med. 104:144–164.
2017.PubMed/NCBI View Article : Google Scholar
|
53
|
Zou ZV, Le Gal K, El Zowalaty AE,
Pehlivanoglu LE, Garellick V, Gul N, Ibrahim MX, Bergh PO,
Henricsson M, Wiel C, et al: Antioxidants promote intestinal tumor
progression in mice. Antioxidants (Basel). 10(241)2021.PubMed/NCBI View Article : Google Scholar
|
54
|
Le Gal K, Ibrahim MX, Wiel C, Sayin VI,
Akula MK, Karlsson C, Dalin MG, Akyürek LM, Lindahl P, Nilsson J
and Bergo MO: Antioxidants can increase melanoma metastasis in
mice. Sci Transl Med. 7(308re8)2015.PubMed/NCBI View Article : Google Scholar
|
55
|
Sayin VI, Ibrahim MX, Larsson E, Nilsson
JA, Lindahl P and Bergo MO: Antioxidants accelerate lung cancer
progression in mice. Sci Transl Med. 6(221ra15)2014.PubMed/NCBI View Article : Google Scholar
|
56
|
Glasauer A and Chandel NS: Targeting
antioxidants for cancer therapy. Biochem Pharmacol. 92:90–101.
2014.PubMed/NCBI View Article : Google Scholar
|