Induction of apoptosis by Se-MSC in U937 human leukemia cells through release of cytochrome c and activation of caspases and PKC-δ: mutual regulation between caspases and PKC-δ via a positive feedback mechanism
- Authors:
- Published online on: November 1, 2003 https://doi.org/10.3892/ijmm.12.5.733
- Pages: 733-739
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Se-methylselenocysteine (Se-MSC) has been shown to possess potent chemopreventive and anti-tumor properties. However, its exact mechanism of action is still not well understood. The present study investigated the mechanism of Se-MSC on the induction of apoptosis using U937 human leukemia cells. Se-MSC induced dose- and time-dependent apoptosis of U937 cells as assessed by flow cytometry analysis, DNA fragmentation, and proteolytic cleavage of poly-(ADP-ribose) polymerase (PARP). Se-MSC increased time- and dose-dependent cytochrome c accumulation in the cytosol, which was greatly inhibited by overexpression of Bcl-2, suggesting that the apoptotic effect by Se-MSC in U937 cells is mitochondrial-dependent. Se-MSC also induced activation of caspases, followed by proteolytic cleavage of PKC-δ. The Se-MSC-induced apoptosis required activities of caspases since pretreatment of a pan-caspase inhibitor z-VAD-fmk greatly suppressed the Se-MSC-induced apoptosis as well as proteolytic cleavage of PKC-δ, suggesting activation of caspases is critical for the Se-MSC-induced apoptosis, and caspases lie upstream of PKC-δ. The Se-MSC-induced apoptosis of U937 cells also required activity of PKC-δ because pretreatment of rottlerin, a specific PKC-δ inhibitor greatly blocked the Se-MSC-induced apoptosis as well as processing and activities of caspases, suggesting activation of PKC-δ is also important for the Se-MSC-induced apoptosis of U937 cells, and PKC-δ lies upstream of caspases. Together, our data suggest the apoptotic mechanism by Se-MSC in U937 cells may be related to cytochrome c release from the mitochondria, and mutual activation between caspases and PKC-δ via a positive feedback mechanism, which may potentiate the apoptotic action by Se-MSC in U937 cells.