1
|
Al-Gubory KH, Fowler PA and Garrel C: The
roles of cellular reactive oxygen species, oxidative stress and
antioxidants in pregnancy outcomes. Int J Biochem Cell Biol.
42:1634–1650. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang Y, Du Y, Le W, Wang K, Kieffer N and
Zhang J: Redox control of the survival of healthy and diseased
cells. Antioxid Redox Signal. 15:2867–2908. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Scatena R: Mitochondria and cancer: a
growing role in apoptosis, cancer cell metabolism and
dedifferentiation. Adv Exp Med Biol. 942:287–308. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Leonarduzzi G, Sottero B, Testa G, Biasi F
and Poli G: New insights into redox-modulated cell signaling. Curr
Pharm Des. 17:3994–4006. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Roberts CK and Sindhu KK: Oxidative stress
and metabolic syndrome. Life Sci. 84:705–712. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ballard JW: Drosophila simulans as
a novel model for studying mitochondrial metabolism and aging. Exp
Gerontol. 40:763–773. 2005. View Article : Google Scholar
|
7
|
Shubassi G, Robert T, Vanoli F, Minucci S
and Foiani M: Acetylation: a novel link between double-strand break
repair and autophagy. Cancer Res. 72:1332–1335. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Murray JM, Stiff T and Jeggo PA: DNA
double-strand break repair within heterochromatic regions. Biochem
Soc Trans. 40:173–178. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Babizhayev MA, Vishnyakova KS and Yegorov
YE: Telomere-dependent senescent phenotype of lens epithelial cells
as a biological marker of aging and cataractogenesis: the role of
oxidative stress intensity and specific mechanism of phospholipid
hydroperoxide toxicity in lens and aqueous. Fundam Clin Pharmacol.
25:139–162. 2011. View Article : Google Scholar
|
10
|
Saretzki G and Von Zglinicki T:
Replicative aging, telomeres, and oxidative stress. Ann NY Acad
Sci. 959:24–29. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li ZY, Yang Y, Ming M and Liu B:
Mitochondrial ROS generation for regulation of autophagic pathways
in cancer. Biochem Biophys Res Commun. 414:5–8. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Azad N, Rojanasakul Y and Vallyathan V:
Inflammation and lung cancer: roles of reactive oxygen/nitrogen
species. J Toxicol Environ Health B Crit Rev. 11:1–15. 2008.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Asai T, Liu Y, Bae N and Nimer SD: The p53
tumor suppressor protein regulates hematopoietic stem cell fate. J
Cell Physiol. 226:2215–2221. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu J, Tian W, Ma X, et al: The molecular
mechanism underlying morphine-induced Akt activation: roles of
protein phosphatases and reactive oxygen species. Cell Biochem
Biophys. 61:303–311. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Okumura N, Yoshida H, Kitagishi Y,
Murakami M, Nishimura Y and Matsuda S: PI3K/AKT/PTEN signaling as a
molecular target in leukemia angiogenesis. Adv Hematol.
2012:8430852012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Okumura N, Yoshida H, Kitagishi Y,
Nishimura Y and Matsuda S: Alternative splicings on p53, BRCA1 and
PTEN genes involved in breast cancer. Biochem Biophys Res Commun.
413:395–399. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Croushore JA, Blasiole B, Riddle RC, et
al: Ptena and ptenb genes play distinct roles in zebrafish
embryogenesis. Dev Dyn. 234:911–921. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Teresi RE, Shaiu CW, Chen CS, Chatterjee
VK, Waite KA and Eng C: Increased PTEN expression due to
transcriptional activation of PPARgamma by Lovastatin and
Rosiglitazone. Int J Cancer. 118:2390–2398. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Harikumar KB and Aggarwal BB: Resveratrol:
a multitargeted agent for age-associated chronic diseases. Cell
Cycle. 7:1020–1035. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yoshida H, Okumura N, Kitagishi Y,
Nishimura Y and Matsuda S: Ethanol extract of rosemary repressed
PTEN expression in K562 culture cells. Int J Appl Boil Pharm
Technol. 2:316–322. 2011.
|
21
|
Mueller S, Phillips J, Onar-Thomas A, et
al: PTEN promoter methylation and activation of the PI3K/Akt/mTOR
pathway in pediatric gliomas and influence on clinical outcome.
Neuro Oncol. 14:1146–1152. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Singh G and Chan AM: Post-translational
modifications of PTEN and their potential therapeutic implications.
Curr Cancer Drug Targets. 11:536–547. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tysnes BB and Mahesparan R: Biological
mechanisms of glioma invasion and potential therapeutic targets. J
Neurooncol. 53:129–147. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhu X, Qin X, Fei M, et al: Combined
phosphatase and tensin homolog (PTEN) loss and fatty acid synthase
(FAS) overexpression worsens the prognosis of Chinese patients with
hepatocellular carcinoma. Int J Mol Sci. 13:9980–9991. 2012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Weng LP, Brown JL and Eng C: PTEN
coordinates G(1) arrest by down-regulating cyclin D1 via its
protein phosphatase activity and up-regulating p27 via its lipid
phosphatase activity in a breast cancer model. Hum Mol Genet.
10:599–604. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Carver DJ, Gaston B, Deronde K and Palmer
LA: Akt-mediated activation of HIF-1 in pulmonary vascular
endothelial cells by S-nitrosoglutathione. Am J Respir Cell Mol
Biol. 37:255–263. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li YM, Zhou BP, Deng J, Pan Y, Hay N and
Hung MC: A hypoxia-independent hypoxia-inducible factor-1
activation pathway induced by phosphatidylinositol-3 kinase/Akt in
HER2 overexpressing cells. Cancer Res. 65:3257–3263.
2005.PubMed/NCBI
|
28
|
Howes AL, Arthur JF, Zhang T, et al:
Akt-mediated cardiomyocyte survival pathways are compromised by G
alpha q-induced phosphoinositide 4,5-bisphosphate depletion. J Biol
Chem. 278:40343–40351. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Castaneda CA, Cortes-Funes H, Gomez HL and
Ciruelos EM: The phosphatidyl inositol 3-kinase/AKT signaling
pathway in breast cancer. Cancer Metastasis Rev. 29:751–759. 2010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Fruchart JC: Peroxisome
proliferator-activated receptor-alpha (PPARalpha): at the
crossroads of obesity, diabetes and cardiovascular disease.
Atherosclerosis. 205:1–8. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schreurs M, Kuipers F and van der Leij FR:
Regulatory enzymes of mitochondrial beta-oxidation as targets for
treatment of the metabolic syndrome. Obes Rev. 11:380–388. 2010.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ruggiero C, Ehrenshaft M, Cleland E and
Stadler K: High-fat diet induces an initial adaptation of
mitochondrial bioenergetics in the kidney despite evident oxidative
stress and mitochondrial ROS production. Am J Physiol Endocrinol
Metab. 300:E1047–E1058. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pipatpiboon N, Pratchayasakul W,
Chattipakorn N and Chattipakorn SC: PPARγ agonist improves neuronal
insulin receptor function in hippocampus and brain mitochondria
function in rats with insulin resistance induced by long term
high-fat diets. Endocrinology. 153:329–338. 2012.
|
34
|
Kim HJ, Ham SA, Kim MY, et al: PPARδ
coordinates angiotensin II-induced senescence in vascular smooth
muscle cells through PTEN-mediated inhibition of superoxide
generation. J Biol Chem. 286:44585–44593. 2011.
|
35
|
Das UN: A defect in the activity of Delta6
and Delta5 desaturases may be a factor predisposing to the
development of insulin resistance syndrome. Prostaglandins Leukot
Essent Fatty Acids. 72:343–350. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lee J and Kemper JK: Controlling SIRT1
expression by microRNAs in health and metabolic disease. Aging.
2:527–534. 2010.PubMed/NCBI
|
37
|
Ikenoue T, Inoki K, Zhao B and Guan KL:
PTEN acetylation modulates its interaction with PDZ domain. Cancer
Res. 68:6908–6912. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Choi HN, Bae JS, Jamiyandorj U, et al:
Expression and role of SIRT1 in hepatocellular carcinoma. Oncol
Rep. 26:503–510. 2011.PubMed/NCBI
|
39
|
Qu Y, Zhang J, Wu S, Li B, Liu S and Cheng
J: SIRT1 promotes proliferation and inhibits apoptosis of human
malignant glioma cell lines. Neurosci Lett. 525:168–172. 2012.
View Article : Google Scholar : PubMed/NCBI
|
40
|
van Brabant AJ, Stan R and Ellis NA: DNA
helicases, genomic instability, and human genetic disease. Annu Rev
Genomics Hum Genet. 1:409–459. 2000.PubMed/NCBI
|
41
|
Li B, Reddy S and Comai L:
Sequence-specific processing of telomeric 3′ overhangs by the
Werner syndrome protein exonuclease activity. Aging. 1:289–302.
2009.
|
42
|
Szekely AM, Bleichert F, Nümann A, et al:
Werner protein protects nonproliferating cells from oxidative DNA
damage. Mol Cell Biol. 25:10492–10506. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Labbé A, Lafleur VN, Patten DA, et al: The
Werner syndrome gene product (WRN): a repressor of
hypoxia-inducible factor-1 activity. Exp Cell Res. 318:1620–1632.
2012.PubMed/NCBI
|
44
|
Massip L, Garand C, Turaga RV, Deschênes
F, Thorin E and Lebel M: Increased insulin, triglycerides, reactive
oxygen species, and cardiac fibrosis in mice with a mutation in the
helicase domain of the Werner syndrome gene homologue. Exp
Gerontol. 41:157–168. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Massip L, Garand C, Paquet ER, et al:
Vitamin C restores healthy aging in a mouse model for Werner
syndrome. FASEB J. 24:158–172. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Barbieri SS, Ruggiero L, Tremoli E and
Weksler BB: Suppressing PTEN activity by tobacco smoke plus
interleukin-1beta modulates dissociation of
VE-cadherin/beta-catenin complexes in endothelium. Arterioscler
Thromb Vasc Biol. 28:732–738. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Leslie NR, Bennett D, Lindsay YE, Stewart
H, Gray A and Downes CP: Redox regulation of PI 3-kinase signalling
via inactivation of PTEN. EMBO J. 22:5501–5510. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kim JW, Kang KH, Burrola P, Mak TW and
Lemke G: Retinal degeneration triggered by inactivation of PTEN in
the retinal pigment epithelium. Genes Dev. 22:3147–3157. 2008.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Zu L, Zheng X, Wang B, et al: Ischemic
preconditioning attenuates mitochondrial localization of PTEN
induced by ischemia-reperfusion. Am J Physiol Heart Circ Physiol.
300:H2177–H2186. 2011. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lee SR, Yang KS, Kwon J, Lee C, Jeong W
and Rhee SG: Reversible inactivation of the tumor suppressor PTEN
by H2O2. J Biol Chem. 277:20336–20342. 2002.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Matsuda M, Takeshita K, Kurokawa T, et al:
Crystal structure of the cytoplasmic phosphatase and tensin homolog
(PTEN)-like region of Ciona intestinalis voltage-sensing
phosphatase provides insight into substrate specificity and redox
regulation of the phosphoinositide phosphatase activity. J Biol
Chem. 286:23368–23377. 2011.PubMed/NCBI
|
52
|
Maillet A and Pervaiz S: Redox regulation
of p53, redox effectors regulated by p53: a subtle balance.
Antioxid Redox Signal. 16:1285–1294. 2012. View Article : Google Scholar : PubMed/NCBI
|