1
|
Rack H and Qazi J: Titanium alloys for
biomedical applications. Mater Sci Eng C. 26:1269–1277. 2006.
View Article : Google Scholar
|
2
|
Snyder SM and Schneider E: Estimation of
mechanical properties of cortical bone by computed tomography. J
Orthop Res. 9:422–431. 1991. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rae T: The toxicity of metals used in
orthopaedic prostheses. An experimental study using cultured human
synovial fibroblasts. J Bone Joint Surg Br. 63-B:435–440.
1981.PubMed/NCBI
|
4
|
Hallab NJ, Vermes C, Messina C, Roebuck
KA, Glant TT and Jacobs JJ: Concentration- and
composition-dependent effects of metal ions on human MG-63
osteoblasts. J Biomed Mater Res. 60:420–433. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Guillemot F: Recent advances in the design
of titanium alloys for orthopedic applications. Expert Rev Med
Devices. 2:741–748. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Long M and Rack HJ: Titanium alloys in
total joint replacement -a materials science perspective.
Biomaterials. 19:1621–1639. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Miura K, Yamada N, Hanada S, Jung TK and
Itoi E: The bone tissue compatibility of a new Ti-Nb-Sn alloy with
a low Young’s modulus. Acta Biomater. 7:2320–2326. 2011.PubMed/NCBI
|
8
|
Wang LQ, Lu WJ, Qin JN, Zhang F and Zhang
D: Change in microstructures and mechanical properties of
biomedical Ti-Nb-Ta-Zr system alloy through cross-rolling. Mater
Trans. 49:1791–1795. 2008. View Article : Google Scholar
|
9
|
Wang LQ, Lu WJ, Qin JN, Zhang F and Zhang
D: Microstructure and mechanical properties of cold-rolled TiNbTaZr
biomedical beta titanium alloy. Mater Sci Eng A Struct Mater.
490:421–426. 2008. View Article : Google Scholar
|
10
|
Zhu L, Wang H, Xu J, Lin J and Wang X:
Effects of nacre-coated titanium surfaces on cell proliferation and
osteocalcin expression in MG-63 osteoblast-like cells. Afr J
Biotechnol. 10:15387–15393. 2011.
|
11
|
Lee MH, Kang JH and Lee SW: The
significance of differential expression of genes and proteins in
human primary cells caused by microgrooved biomaterial substrata.
Biomaterials. 33:3216–3234. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hu Y, Cai K, Luo Z, et al: Regulation of
the differentiation of mesenchymal stem cells in vitro and
osteogenesis in vivo by microenvironmental modification of titanium
alloy surfaces. Biomaterials. 33:3515–3528. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Schliephake H, Boetel C, Foerster A,
Schwenzer B, Reichert J and Scharnweber D: Effect of
oligonucleotide mediated immobilization of bone morphogenic
proteins on titanium surfaces. Biomaterials. 33:1315–1322. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Qu Z, Rausch-Fan X, Wieland M, Matejka M
and Schedle A: The initial attachment and subsequent behavior
regulation of osteoblasts by dental implant surface modification. J
Biomed Mater Res A. 82:658–668. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rausch-fan X, Qu Z, Wieland M, Matejka M
and Schedle A: Differentiation and cytokine synthesis of human
alveolar osteoblasts compared to osteoblast-like cells (MG63) in
response to titanium surfaces. Dent Mater. 24:102–110. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhao G, Raines A, Wieland M, Schwartz Z
and Boyan B: Requirement for both micron-and submicron scale
structure for synergistic responses of osteoblasts to substrate
surface energy and topography. Biomaterials. 28:2821–2829. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Padial-Molina M, Galindo-Moreno P,
Fernandez-Barbero JE, et al: Role of wettability and nanoroughness
on interactions between osteoblast and modified silicon surfaces.
Acta Biomater. 7:771–778. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhuang LF, Jiang HH, Qiao SC, et al: The
roles of extracellular signal-regulated kinase 1/2 pathway in
regulating osteogenic differentiation of murine preosteoblasts
MC3T3-E1 cells on roughened titanium surfaces. J Biomed Mater Res
A. 100:125–133. 2012. View Article : Google Scholar
|
19
|
Higuchi C, Myoui A, Hashimoto N, et al:
Continuous inhibition of MAPK signaling promotes the early
osteoblastic differentiation and mineralization of the
extracellular matrix. J Bone Miner Res. 17:1785–1794. 2002.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Kono S, Oshima Y, Hoshi K, et al: Erk
pathways negatively regulate matrix mineralization. Bone. 40:68–74.
2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Olivares-Navarrete R, Hyzy SL, Hutton DL,
et al: Role of non-canonical Wnt signaling in osteoblast maturation
on microstructured titanium surfaces. Acta Biomater. 7:2740–2750.
2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vlacic-Zischke J, Hamlet SM, Frus T,
Tonetti MS and Ivanovski S: The influence of surface microroughness
and hydrophilicity of titanium on the up-regulation of TGFβ/BMP
signalling in osteoblasts. Biomaterials. 32:665–671.
2011.PubMed/NCBI
|
23
|
Stiehler M, Lind M, Mygind T, et al:
Morphology, proliferation, and osteogenic differentiation of
mesenchymal stem cells cultured on titanium, tantalum, and chromium
surfaces. J Biomed Mater Res A. 86:448–458. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Balla VK, Bodhak S, Bose S and
Bandyopadhyay A: Porous tantalum structures for bone implants:
fabrication, mechanical and in vitro biological properties. Acta
Biomater. 6:3349–3359. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Balla VK, Banerjee S, Bose S and
Bandyopadhyay A: Direct laser processing of a tantalum coating on
titanium for bone replacement structures. Acta Biomater.
6:2329–2334. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sista S, Wen C, Hodgson PD and Pande G:
The influence of surface energy of titanium-zirconium alloy on
osteoblast cell functions in vitro. J Biomed Mater Res A. 97:27–36.
2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hempel U, Hefti T, Kalbacova M,
Wolf-Brandstetter C, Dieter P and Schlottig F: Response of
osteoblast-like SAOS-2 cells to zirconia ceramics with different
surface topographies. Clin Oral Implants Res. 21:174–181. 2010.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Ramaswamy Y, Wu C, Van Hummel A, Combes V,
Grau G and Zreiqat H: The responses of osteoblasts, osteoclasts and
endothelial cells to zirconium modified calcium-silicate-based
ceramic. Biomaterials. 29:4392–4402. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Palmieri A, Pezzetti F, Brunelli G, et al:
Zirconium oxide regulates RNA interfering of osteoblast-like cells.
J Mater Sci Mater Med. 19:2471–2476. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lin DJ, Chuang CC, Chern Lin JH, Lee JW,
Ju CP and Yin HS: Bone formation at the surface of low modulus
Ti-7.5Mo implants in rabbit femur. Biomaterials. 28:2582–2589.
2007. View Article : Google Scholar : PubMed/NCBI
|