1
|
Park IH, Zhao R, West JA, et al:
Reprogramming of human somatic cells to pluripotency with defined
factors. Nature. 451:141–146. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Liu JY, Peng HF, Gopinath S, Tian J and
Andreadis ST: Derivation of functional smooth muscle cells from
multipotent human hair follicle mesenchymal stem cells. Tissue Eng
Part A. 16:2553–2564. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hoogduijn MJ, Gorjup E and Genever PG:
Comparative characterization of hair follicle dermal stem cells and
bone marrow mesenchymal stem cells. Stem Cell Dev. 15:49–60. 2006.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Jahoda CA, Whitehouse J, Reynolds AJ and
Hole N: Hair follicle dermal cells differentiate into adipogenic
and osteogenic lineages. Exp Dermatol. 12:849–859. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rufaut NW, Goldthorpe NT, Wildermoth JE
and Wallace OA: Myogenic differentiation of dermal papilla cells
from bovine skin. J Cell Physiol. 209:959–966. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jahoda CA, Reynolds AJ, Chaponnier C,
Forester JC and Gabbiani G: Smooth muscle alpha-actin is a maker
for hair follicle dermis in vivo and in vitro. J Cell Sci.
99:627–636. 1991.PubMed/NCBI
|
7
|
Lin X, Buff EM, Perrimon N and Michelson
AM: Heparan sulfate proteoglycans are essential for FGF receptor
signaling during Drosophila embryonic development.
Development. 126:3715–3723. 1999.PubMed/NCBI
|
8
|
Böhlen P, Esch F, Baird A and
Gospodarowicz D: Acidic fibroblast growth factor (FGF) from bovine
brain: amino-terminal sequence and comparison with basic FGF. EMBO
J. 4:1951–1956. 1985.PubMed/NCBI
|
9
|
Gospodarowicz D, Massoglia S, Cheng J and
Fujii DK: Effect of fibroblast growth factor and lipoproteins on
the proliferation of endothelial cells derived from bovine adrenal
cortex, brain cortex, and corpus luteum capillaries. J Cell
Physiol. 127:121–136. 1986. View Article : Google Scholar
|
10
|
Vallier L, Alexander M and Pedersen RA:
Activin/Nodal and FGF pathways cooperate to maintain pluripotency
of human embryonic stem cells. J Cell Sci. 118:4495–4509. 2005.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang
P, Meng S, Feng J, Miao C, Ding M, Li D and Deng H: Noggin and bFGF
cooperate to maintain the pluripotency of humanembryonic stem cells
in the absence of feeder layers. Biochem Biophys Res Commun.
330:934–942. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Butterwith SC, Peddie CD and Goddard C:
Regulation of adipocyte precursor DNA synthesis by acidic and basic
fibroblast growth factors: interaction with heparin and other
growth factors. J Endocrinol. 137:369–374. 1993. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hauner H, Röhrig K and Petruschke T:
Effects of epidermal growth factor (EGF), platelet-derived growth
factor (PDGF) and fibroblast growth factor (FGF) on human adipocyte
development and function. Eur J Clin Invest. 25:90–96. 1995.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Tamama K, Fan VH, Griffith LG, Blair HC
and Wells A: Epidermal growth factor as a candidate for ex vivo
expansion of bone marrow-derived mesenchymal stem cells. Stem
Cells. 24:686–695. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zaragosi LE, Ailhaud G and Dani C:
Autocrine fibroblast growth factor 2 signaling is critical for
self-renewal of human multipotent adipose-derived stem cells. Stem
Cells. 24:2412–2419. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Toma JG, Akhavan M, Fernandes KJ,
Barnabé-Heider F, Sadikot A, Kaplan DR and Miller FD: Isolation of
multipotent adult stem cells from the dermis of mammalian skin. Nat
Cell Biol. 3:778–784. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fernandes KJ, McKenzie IA, Mill P, et al:
A dermal niche for multipotent adult skin-derived precursor cells.
Nat Cell Biol. 6:1082–1093. 2004. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Toma JG, McKenzie IA, Bagli D and Miller
FD: Isolation and characterization of multipotent skin-derived
precursors from human skin. Stem Cells. 23:727–737. 2005.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen FG, Zhang WJ, Bi D, Liu W, Wei X,
Chen FF, Zhu L, Cui L and Cao Y: Clonal analysis of nestin(−)
vimentin(+) multipotent fibroblasts isolated from human dermis. J
Cell Sci. 120:2875–2883. 2007.
|
20
|
Lorenz K, Sicker M, Schmelzer E, Rupf T,
Salvetter J, Schulz-Siegmund M and Bader A: Multilineage
differentiation potential of human dermal skin-derived fibroblasts.
Exp Dermatol. 17:925–932. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cotsarelis G, Sun TT and Lavker RM:
Label-retaining cells reside in the bulge area of pilosebaceous
unit: implications for follicular stem cells, hair cycle, and skin
carcinogenesis. Cell. 61:1329–1337. 1990. View Article : Google Scholar : PubMed/NCBI
|
22
|
Morris RJ and Potten CS: Highly persistent
label-retaining cells in the hair follicles of mice and their fate
following induction of anagen. J Invest Dermatol. 112:470–475.
1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tumbar T, Guasch G, Greco V, Blanpain C,
Lowry WE, Rendl M and Fuchs E: Defining the epithelial stem cell
niche in skin. Science. 303:359–363. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Morris RJ, Liu Y, Marles L, Yang Z,
Trempus C, Li S, Lin JS, Sawicki JA and Cotsarelis G: Capturing and
profiling adult hair follicle stem cells. Nat Biotechnol.
22:411–417. 2004. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Adachi H, Kurachi H, Homma H, et al:
Epidermal growth factor promotes adipogenesis of 3T3-L1 cell in
vitro. Endocrinology. 135:1824–1830. 1994.PubMed/NCBI
|
26
|
Tsutsumi S, Shimazu A, Miyazaki K, Pan H,
Koike C, Yoshida E, Takagishi K and Kato Y: Retention of
multilineage differentiation potential of mesenchymal cells during
proliferation in response to FGF. Biochem Biophys Res Commun.
288:413–419. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Solchaga LA, Penick K, Porter JD, Goldberg
VM, Caplan AI and Welter JF: FGF-2 enhances the mitotic and
chondrogenic potentials of human adult bone marrow-derived
mesenchymal stem cells. J Cell Physiol. 203:398–409. 2005.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Martin I, Muraglia A, Campanile G,
Cancedda R and Quarto R: Fibroblast growth factor-2 supports ex
vivo expansion and maintenance of osteogenic precursors from human
bone marrow. Endocrinology. 138:4456–4462. 1997.PubMed/NCBI
|
29
|
Stewart AA, Byron CR, Pondenis H and
Stewart MC: Effect of fibroblast growth factor-2 on equine
mesenchymal stem cell monolayer expansion and chondrogenesis. Am J
Vet Res. 68:941–945. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Itoh N and Ornitz DM: Evolution of the Fgf
and Fgfr gene families. Trends Genet. 20:563–569. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Itoh N and Ornitz DM: Functional
evolutionary history of the mouse Fgf gene family. Dev Dyn.
237:18–27. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Thisse B and Thisse C: Functions and
regulations of fibroblast growth factor signaling during embryonic
development. Dev Biol. 287:390–402. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mikels AJ and Nusse R: Wnts as ligands:
processing, secretion and reception. Oncogene. 25:7461–7468. 2006.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Santiago-Mora R, Casado-Díaz A, De Castro
MD and Quesada-Gómez JM: Oleuropein enhances osteoblastogenesis and
inhibits adipogenesis: the effect on differentiation in stem cells
derived from bone marrow. Osteoporos Int. 22:675–684. 2011.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Choi KH, Choi BH, Park SR, Kim BJ and Min
BH: The chondrogenic differentiation of mesenchymal stem cells on
an extracellular matrix scaffold derived from porcine chondrocytes.
Biomaterials. 31:5355–5365. 2010. View Article : Google Scholar : PubMed/NCBI
|