1
|
Li J, Sarosi I, Yan XQ, Morony S,
Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman
S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J,
Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL and Boyle WJ:
RANK is the intrinsic hematopoietic cell surface receptor that
controls osteoclastogenesis and regulation of bone mass and calcium
metabolism. Proc Natl Acad Sci USA. 97:1566–1571. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Brinkmann J, Hefti T, Schlottig F, Spencer
ND and Hall H: Response of osteoclasts to titanium surfaces with
increasing surface roughness: an in vitro study. Biointerphases.
7:342012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Anderegg F, Geblinger D, Horvath P,
Charnley M, Textor M, Addadi L and Geiger B: Substrate adhesion
regulates sealing zone architecture and dynamics in cultured
osteoclasts. PloS One. 6:e285832011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Shibata K, Yoshimura Y, Kikuiri T,
Hasegawa T, Taniguchi Y, Deyama Y, Suzuki Ka and Iida J: Effect of
the release from mechanical stress on osteoclastogenesis in
RAW264.7 cells. Int J Mol Med. 28:73–79. 2011.PubMed/NCBI
|
5
|
Shu G, Yamamoto K and Nagashima M:
Differences in osteoclast formation between proximal and distal
tibial osteoporosis in rats with adjuvant arthritis: inhibitory
effects of bisphosphonates on osteoclasts. Mod Rheumatol.
16:343–349. 2006. View Article : Google Scholar
|
6
|
Suda T, Udagawa N, Nakamura I, Miyaura C
and Takahashi N: Modulation of osteoclast differentiation by local
factors. Bone. 17(Suppl 2): 87S–91S. 1995. View Article : Google Scholar : PubMed/NCBI
|
7
|
Glantschnig H, Fisher JE, Wesolowski G,
Rodan GA and Reszka AA: M-CSF, TNFalpha and RANK ligand promote
osteoclast survival by signaling through mTOR/S6 kinase. Cell Death
Differ. 10:1165–1177. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nemeth K, Schoppet M, Al-Fakhri N, Helas
S, Jessberger R, Hofbauer LC and Goettsch C: The role of
osteoclast-associated receptor in osteoimmunology. J Immunol.
186:13–18. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mancino AT, Klimberg VS, Yamamoto M,
Manolagas SC and Abe E: Breast cancer increases osteoclastogenesis
by secreting M-CSF and upregulating RANKL in stromal cells. J Surg
Res. 100:18–24. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Simonet WS, Lacey DL, Dunstan CR, Kelley
M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T,
Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G,
Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D,
Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R
and Boyle WJ: Osteoprotegerin: a novel secreted protein involved in
the regulation of bone density. Cell. 89:309–319. 1997. View Article : Google Scholar : PubMed/NCBI
|
11
|
Roodman GD: Cell biology of the
osteoclast. Exp Hematol. 27:1229–1241. 1999. View Article : Google Scholar
|
12
|
Hsu H, Lacey DL, Dunstan CR, Solovyev I,
Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang
L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C,
Morony S, Shimamoto G, Bass MB and Boyle WJ: Tumor necrosis factor
receptor family member RANK mediates osteoclast differentiation and
activation induced by osteoprotegerin ligand. Proc Nat Acad Sci
USA. 96:3540–3545. 1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Makihira S, Mine Y, Nikawa H, Shuto T,
Kosaka E, Sugiyama M and Hosokawa R: Immobilized-OPG-Fc on a
titanium surface inhibits RANKL-dependent osteoclast
differentiation in vitro. J Mater Sci Mater Med. 21:647–653. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Vaananen HK, Liu YK, Lehenkari P and
Uemara T: How do osteoclasts resorb bone? Mater Sci Eng C.
6:205–209. 1998. View Article : Google Scholar
|
15
|
Wittrant Y, Theoleyre S, Couillaud S,
Dunstan C, Heymann D and Rédini F: Relevance of an in vitro
osteoclastogenesis system to study receptor activator of NF-κB
ligand and osteoprotegerin biological activities. Exp Cell Res.
293:292–301. 2004.PubMed/NCBI
|
16
|
Chen J, He JQ, Zhen SY and Huang LQ: OPG
inhibits gene expression of RANK and CAII in mouse osteoclast-like
cell. Rheumatol Int. 32:3993–3998. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Saltel F, Chabadel A, Bonnelye E and
Jurdic P: Actin cytoskeletal organisation in osteoclasts: a model
to decipher transmigration and matrix degradation. Eur J Cell Biol.
87:459–468. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee JW, Mase N, Yonezawa T, Seo HJ, Jeon
WB, Cha BY, Nagai K and Woo JT: Palmatine attenuates osteoclast
differentiation and function through inhibition of receptor
activator of nuclear factor-κb ligand expression in osteoblast
cells. Biol Pharm Bull. 33:1733–1739. 2010.PubMed/NCBI
|
19
|
Ye S, Fowler TW, Pavlos NJ, Ng PY, Liang
K, Feng Y, Zheng M, Kurten R, Manolagas SC and Zhao H: LIS1
regulates osteoclast formation and function through its
interactions with dynein/dynactin and Plekhm1. PloS One.
6:e272852011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jurdic P, Saltel F, Chabadel A and
Destaing O: Podosome and sealing zone: specificity of the
osteoclast model. Eur J Cell Biol. 85:195–202. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Destaing O, Saltel F, Geminard JC, Jurdic
P and Bard F: Podosomes display actin turnover and dynamic
self-organization in osteoclasts expressing actin-green fluorescent
protein. Mol Biol Cell. 14:407–416. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Meng B, Yang X, Chen Y, Zhai J and Liang
X: Effect of titanium particles on osteoclast activity in
vitro. Mol Med Rep. 3:1065–1069. 2010.PubMed/NCBI
|
23
|
Vaananen HK, Zhao H, Mulari M and Halleen
JM: The cell biology of osteoclast function. J Cell Sci.
113:377–381. 2000.
|
24
|
Lehenkari P, Hentunen TA, Laitala-Leinonen
T, Tuukkanen J and Vaananen HK: Carbonic anhydrase II plays a major
role in osteoclast differentiation and bone resorption by effecting
the steady state intracellular pH and Ca2+. Exp Cell
Res. 242:128–137. 1998. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gu JH, Liu JD, Shen Y and Liu ZP: Effects
of RANKL, osteoprotegerin, calcium and phosphorus on survival and
activation of Muscovy duck osteoclasts in vitro. Vet J.
181:321–325. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Teitelbaum SL, Tondravi MM and Ross FP:
Osteoclasts, macrophages, and the molecular mechanisms of bone
resorption. J Leukoc Biol. 61:381–388. 1997.PubMed/NCBI
|
27
|
Rousselle AV and Heymann D: Osteoclastic
acidification pathways during bone resorption. Bone. 30:533–540.
2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Riihonen R, Supuran CT, Parkkila S,
Pastorekova S, Vaananen HK and Laitala-Leinonen T: Membrane-bound
carbonic anhydrases in osteoclasts. Bone. 40:1021–1031. 2007.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kusano K, Miyaura C, Inada M, Tamura T,
Ito A, Nagase H, Kamoi K and Suda T: Regulation of matrix
metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and
interleukin-6 in mouse calvaria: association of MMP induction with
bone resorption. Endocrinology. 139:1338–1345. 1998.PubMed/NCBI
|
30
|
Yang J, Shang GD and Zhang YQ: Study of a
novel antiosteoporosis screening model targeted on cathepsin K.
Biomed Environ Sci. 17:273–280. 2004.PubMed/NCBI
|