1
|
Painter TJ: Algal polysaccharides. The
Polysaccharides. Aspinall GO: 2. Academic press; New York, NY: pp.
195–285. 1983
|
2
|
Zvyagintseva TN, Shevchenko NM, Nazarova
IV, Scobum AS, Luk’yanov PA and Elyakova LA: Inhibition of
complement activation by water-soluble polysaccharides of some
far-eastern brown seaweeds. Comp Biochem Physiol C Toxicol
Pharmacol. 126:209–215. 2000.PubMed/NCBI
|
3
|
Park HK, Kim IH, Kim J and Nam TJ:
Induction of apoptosis by laminarin, regulating the insulin-like
growth factor-IR signaling pathways in HT-29 human colon cells. Int
J Mol Med. 30:734–738. 2012.PubMed/NCBI
|
4
|
Kumar CC: Signaling by integrin receptors.
Oncogene. 17:1365–1373. 1998. View Article : Google Scholar
|
5
|
Hung MC and Lau YK: Basic science of
HER-2/neu: a review. Semin Oncol. 26(4 Suppl 12): 51–59.
1999.PubMed/NCBI
|
6
|
Fürstenberger G and Senn HJ: Insulin-like
growth factors and cancer. Lancet Oncol. 3:298–302. 2002.
|
7
|
Peles E and Yarden Y: Neu and its ligands:
from an oncogene to neural factors. Bioessays. 15:815–824. 1993.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Carraway KL III and Cantley LC: A neu
acquaintance for erbB3 and erbB4: a role for receptor
heterodimerization in growth signaling. Cell. 78:5–8. 1994.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Hamdy FC and Thomas BG: New therapeutic
concepts in prostate cancer. BJU Int. 88(Suppl 2): 43–48. 2001.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Venkateswarlu S, Dawson DM, St Clair P,
Gupta A, Willson JK and Brattain MG: Autocrine heregulin generates
growth factor independence and blocks apoptosis in colon cancer
cells. Oncogene. 21:78–86. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kapitanović S, Radosević S, Kapitanović M,
Andelinović S, Ferencić Z, Tavassoli M, Primorać D, Sonicki Z,
Spaventi S, Pavelic K and Spaventi R: The expression of p185
(HER-2/neu) correlates with the stage of disease and survival in
colorectal cancer. Gastroenterology. 112:1103–1113. 1997.PubMed/NCBI
|
12
|
Safran H, Steinhoff M, Mangray S, Rathore
R, King TC, Chai L, Berzein K, Moore T, Iannitti D, Reiss P,
Pasquariello T, Akerman P, Quirk D, Mass R, Goldstein L and
Tantravahi U: Over expression of the HER-2/neu oncogene in
pancreatic adenocarcinoma. Am J Clin Oncol. 24:496–499. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Hynes NE and Lane HA: ERBB receptors and
cancer: the complexity of targeted inhibitors. Nat Rev Cancer.
5:341–354. 2005. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Citri A and Yarden Y: EGF-ERBB signalling:
towards the systems level. Nat Rev Mol Cell Biol. 7:505–516. 2006.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Sharma SV and Settleman J: ErbBs in lung
cancer. Exp Cell Res. 315:557–571. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yarden Y and Sliwkowski MX: Untangling the
ErbB signaling network. Nat Rev Mol Cell Biol. 2:127–137. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Reed JC: Double identity for proteins of
the Bcl-2 family. Nature. 387:773–776. 1997. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chao DT and Korsmeyer SJ: BCL-2 family:
regulators of cell death. Annu Rev Immunol. 16:395–419. 1998.
View Article : Google Scholar
|
19
|
Kluck RM, Bossy-Wetzel E, Green DR and
Newmeyer DD: The release of cytochrome c from mitochondria: a
primary site for Bcl-2 regulation of apoptosis. Science.
275:1132–1136. 1997. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shimizu S, Narita M and Tsujimoto Y: Bcl-2
family proteins regulate the release of apoptogenic cytochrome c by
the mitochondrial channel VDAC. Nature. 399:483–487. 1999.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Bossy-Wetzel E, Newmeyer DD and Green DR:
Mitochondrial cytochrome c release in apoptosis occurs upstream of
DEVD-specific caspase activation and independently of mitochondrial
transmembrane depolarization. EMBO J. 17:37–49. 1998. View Article : Google Scholar
|
22
|
Tang YJ, Yang JS, Lin CF, Shyu WC, Tsuzuki
M, Lu CC, Chen YF and Lai KC: Houttuynia cordata Thunb
extract induces apoptosis through mitochondrial-dependent pathway
in HT-29 human colon adenocarcinoma cells. Oncol Rep. 22:1051–1056.
2009.
|
23
|
Graña X and Reddy EP: Cell cycle control
in mammalian cells: role of cyclins, cyclin dependent kinases
(CDKs), growth suppressor genes and cyclin-dependent kinase
inhibitors (CKIs). Oncogene. 11:211–219. 1995.PubMed/NCBI
|
24
|
Salomon DS, Brandt R, Ciardiello F and
Normanno NP: Epidermal growth factor-related peptides and their
receptors in human malignancies. Crit Rev Oncol Hematol.
19:183–232. 1995. View Article : Google Scholar : PubMed/NCBI
|
25
|
Varticovski L, Harrison-Findik D, Keeler
ML and Susa M: Role of PI 3-kinase in mitogenesis. Biochim Biophys
Acta. 1226:1–11. 1994. View Article : Google Scholar : PubMed/NCBI
|
26
|
Toker A and Cantley LC: Signalling through
the lipid products of phosphoinositide-3-OH kinase. Nature.
387:673–676. 1997. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Klippel A, Kavanaugh WM, Pot D and
Williams LT: A specific product of phosphatidylinositol 3-kinase
directly activates the protein kinase Akt through its pleckstrin
homology domain. Mol Cell Biol. 17:338–344. 1997.PubMed/NCBI
|
28
|
Datta SR, Brunet A and Greenberg ME:
Cellular survival: a play in three Akts. Genes Dev. 13:2905–2927.
1999. View Article : Google Scholar : PubMed/NCBI
|