1
|
Jones BA and Gores GJ: Physiology and
pathophysiology of apoptosis in epithelial cells of the liver,
pancreas, and intestine. Am J Physiol. 273:G1174–G1188.
1997.PubMed/NCBI
|
2
|
Oh SH, Yun KJ, Nan JX, Sohn DH and Lee BH:
Changes in expression and immunolocalization of protein associated
with toxic bile salts-induced apoptosis in rat hepatocytes. Arch
Toxicol. 77:110–115. 2003.PubMed/NCBI
|
3
|
Rodrigues CM and Steer CJ: Mitochondrial
membrane perturbations in cholestasis. J Hepatol. 32:135–141. 2000.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Yerushalmi B, Dahl R, Devereaux MW,
Gumpricht E and Sokol RJ: Bile acid-induced rat hepatocyte
apoptosis is inhibited by antioxidants and blockers of the
mitochondrial permeability transition. Hepatology. 33:616–626.
2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Guicciardi ME and Gores GJ: Apoptosis: a
mechanism of acute and chronic liver injury. Gut. 54:1024–1033.
2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Palmeira CM and Rolo AP:
Mitochondrially-mediated toxicity of bile acids. Toxicology.
203:1–15. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Galle PR, Theilmann L, Raedsch R, Otto G
and Stiehl A: Ursodeoxycholate reduces hepatotoxicity of bile salts
in primary human hepatocytes. Hepatology. 12:486–491. 1990.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Perez MJ and Briz O: Bile-acid-induced
cell injury and protection. World J Gastroenterol. 15:1677–1689.
2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Patel T, Bronk SF and Gores GJ: Increases
of intracellular magnesium promote glycodeoxycholate-induced
apoptosis in rat hepatocytes. J Clin Invest. 94:2183–2192. 1994.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kwo P, Patel T, Bronk SF and Gores GJ:
Nuclear serine protease activity contributes to bile acid-induced
apoptosis in hepatocytes. Am J Physiol. 268:G613–G621.
1995.PubMed/NCBI
|
11
|
Billington D, Evans CE, Godfrey PP and
Coleman R: Effects of bile salts on the plasma membranes of
isolated rat hepatocytes. Biochem J. 188:321–327. 1980.PubMed/NCBI
|
12
|
Sokol RJ, Straka MS, Dahl R, et al: Role
of oxidant stress in the permeability transition induced in rat
hepatic mitochondria by hydrophobic bile acids. Pediatr Res.
49:519–531. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Maillette de Buy Wenniger L and Beuers U:
Bile salts and cholestasis. Dig Liver Dis. 42:409–418.
2010.PubMed/NCBI
|
14
|
Perez MJ, Macias RI and Marin JJ: Maternal
cholestasis induces placental oxidative stress and apoptosis.
Protective effect of ursodeoxycholic acid. Placenta. 27:34–41.
2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang N, Li P, Wang Y, et al:
Hepatoprotective effect of Hypericum japonicum extract and
its fractions. J Ethnopharmacol. 116:1–6. 2008.
|
16
|
Su J, Fu P, Shen Y, et al: Simultaneous
analysis of flavonoids from Hypericum japonicum Thunb. ex
Murray (Hypericaceae) by HPLC-DAD-ESI/MS. J Pharm Biomed Anal.
46:342–348. 2008.
|
17
|
Choi HJ, Kim JH, Lee CH, Ahn YJ, Song JH,
Baek SH and Kwon DH: Antiviral activity of quercetin 7-rhamnoside
against porcine epidemic diarrhea virus. Antiviral Res. 81:77–81.
2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Song JH, Shim JK and Choi HJ: Quercetin
7-rhamnoside reduces porcine epidemic diarrhea virus replication
via independent pathway of viral induced reactive oxygen species.
Virol J. 8:4602011. View Article : Google Scholar
|
19
|
Awaad AS, Maitland DJ and Soliman GA:
Hepatoprotective activity of Schouwia thebica webb. Bioorg
Med Chem Lett. 16:4624–4628. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rathee P, Rathee D, Rathee D and Rathee S:
In-vitro cytotoxic activity of β-Sitosterol triacontenate isolated
from Capparis decidua (Forsk.) Edgew. Asian Pac J Trop Med.
5:225–230. 2012.
|
21
|
Vermes I, Haanen C, Steffens-Nakken H and
Reutelingsperger C: A novel assay for apoptosis. Flow cytometric
detection of phosphatidylserine expression on early apoptotic cells
using fluorescein labelled Annexin V. J Immunol Methods. 184:39–51.
1995. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hofmann AF: Cholestatic liver disease:
pathophysiology and therapeutic options. Liver. 22:14–19. 2002.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Rust C, Wild N, Bernt C, Vennegeerts T,
Wimmer R and Beuers U: Bile acid-induced apoptosis in hepatocytes
is caspase-6-dependent. J Biol Chem. 284:2908–2916. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee TY, Chen FY, Chang HH and Lin HC: The
effect of capillarisin on glycochenodeoxycholic acid-induced
apoptosis and heme oxygenase-1 in rat primary hepatocytes. Mol Cell
Biochem. 325:53–59. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang K, Brems JJ, Gamelli RL and Holterman
AX: Survivin signaling is regulated through nuclear factor-kappa B
pathway during glycochenodeoxycholate-induced hepatocyte apoptosis.
Biochim Biophys Acta. 1803:1368–1375. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Graf D, Kurz AK, Reinehr R, Fischer R,
Kircheis G and Häussinger D: Prevention of bile acid-induced
apoptosis by betaine in rat liver. Hepatology. 36:829–839. 2002.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Kaplowitz N: Mechanisms of liver cell
injury. J Hepatol. 32(Suppl 1): S39–S47. 2000. View Article : Google Scholar
|
28
|
Kim JS, He L and Lemasters JJ:
Mitochondrial permeability transition: a common pathway to necrosis
and apoptosis. Biochem Biophys Res Commun. 304:463–470. 2003.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Sokol RJ, Dahl R, Devereaux MW, Yerushalmi
B, Kobak GE and Gumpricht E: Human hepatic mitochondria generate
reactive oxygen species and undergo the permeability transition in
response to hydrophobic bile acids. J Pediatr Gastroenterol Nutr.
41:235–243. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sokol RJ, Winklhofer-Roob BM, Devereaux MW
and McKim JM Jr: Generation of hydroperoxides in isolated rat
hepatocytes and hepatic mitochondria exposed to hydrophobic bile
acids. Gastroenterology. 109:1249–1256. 1995. View Article : Google Scholar : PubMed/NCBI
|
31
|
Meister A: Glutathione metabolism and its
selective modification. J Biol Chem. 263:17205–17208.
1988.PubMed/NCBI
|
32
|
Fernandes RS and Cotter TG: Apoptosis and
necrosis: intracellular levels of glutathione influence mode of
cell death. Biochem Pharmacol. 48:675–681. 1994. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ben-Yoseph O, Boxer PA and Ross BD:
Assessment of the role of the glutathione and pentose phosphate
pathways in the protection of primary cerebrocortical cultures from
oxidative stress. J Neurochem. 66:2329–2337. 1996. View Article : Google Scholar : PubMed/NCBI
|
34
|
Scaffidi C, Fulda S, Srinivasan A, et al:
Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17:1675–1687.
1998. View Article : Google Scholar : PubMed/NCBI
|
35
|
Venglovecz V, Rakonczay Z Jr, Ozsvári B,
et al: Effects of bile acids on pancreatic ductal bicarbonate
secretion in guinea pig. Gut. 57:1102–1112. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Anwer MS, Engelking LR, Nolan K, Sullivan
D, Zimniak P and Lester R: Hepatotoxic bile acids increase
cytosolic Ca2+ activity of isolated rat hepatocytes.
Hepatology. 8:887–891. 1988. View Article : Google Scholar : PubMed/NCBI
|
37
|
Berridge MJ: Inositol trisphosphate and
calcium signalling mechanisms. Biochim Biophys Acta. 1793:933–940.
2009. View Article : Google Scholar : PubMed/NCBI
|