The role of human endogenous retroviral long terminal repeat sequences in human cancer (Review)
- Authors:
- Hong-Lian Yu
- Zhan-Kui Zhao
- Fan Zhu
-
Affiliations: Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, Hubei 430071, P.R. China, Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China - Published online on: July 30, 2013 https://doi.org/10.3892/ijmm.2013.1460
- Pages: 755-762
This article is mentioned in:
Abstract
Bannert N and Kurth R: Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA. 101(Suppl 2): S14572–S14579. 2004. View Article : Google Scholar : PubMed/NCBI | |
de Parseval N and Heidmann T: Human endogenous retroviruses: from infectious elements to human genes. Cytogenet Genome Res. 110:318–332. 2005.PubMed/NCBI | |
Leib-Mosch C, Haltmeier M, Werner T, et al: Genomic distribution and transcription of solitary HERV-K LTRs. Genomics. 18:261–269. 1993. View Article : Google Scholar : PubMed/NCBI | |
Tonjes RR, Lower R, Boller K, et al: HERV-K: the biologically most active human endogenous retrovirus family. J Acquir Immune Defic Syndr Hum Retrovirol. 13(Suppl 1): S261–S267. 1996. View Article : Google Scholar : PubMed/NCBI | |
Glazkova DV, Nadezhdin EV, Vinogradova TV, et al: Nucleotide sequences of long terminal repeats of the human endogenous retrovirus (LTR HERV-K) on the short arm of chromosome 7: identification, analysis and evaluation of transcriptional activity. Genetika. 39:702–708. 2003.(In Russian). | |
Kurdyukov SG, Lebedev YB, Artamonova II, et al: Full-sized HERV-K (HML-2) human endogenous retroviral LTR sequences on human chromosome 21: map locations and evolutionary history. Gene. 273:51–61. 2001. View Article : Google Scholar : PubMed/NCBI | |
Smit AF: Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev. 9:657–663. 1999. View Article : Google Scholar : PubMed/NCBI | |
Belancio VP, Roy-Engel AM and Deininger PL: All y’all need to know ‘bout retroelements in cancer. Semin Cancer Biol. 20:200–210. 2010. | |
Lamprecht B, Walter K, Kreher S, et al: Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med. 16:571–579. 2010. View Article : Google Scholar : PubMed/NCBI | |
Papadimitriou E, Mikelis C, Lampropoulou E, et al: Roles of pleiotrophin in tumor growth and angiogenesis. Eur Cytokine Netw. 20:180–190. 2009.PubMed/NCBI | |
Sin HS, Huh JW, Kim DS, et al: Transcriptional control of the HERV-H LTR element of the GSDML gene in human tissues and cancer cells. Arch Virol. 151:1985–1994. 2006. View Article : Google Scholar : PubMed/NCBI | |
Feuchter A and Mager D: Functional heterogeneity of a large family of human LTR-like promoters and enhancers. Nucleic Acids Res. 18:1261–1270. 1990. View Article : Google Scholar : PubMed/NCBI | |
Medstrand P, Landry JR and Mager DL: Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem. 276:1896–1903. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dunn CA and Mager DL: Transcription of the human and rodent SPAM1/PH-20 genes initiates within an ancient endogenous retrovirus. BMC Genomics. 6:472005. View Article : Google Scholar : PubMed/NCBI | |
Dunn CA, Medstrand P and Mager DL: An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc Natl Acad Sci USA. 100:12841–12846. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dunn CA, van de Lagemaat LN, Baillie GJ and Mager DL: Endogenous retrovirus long terminal repeats as ready-to-use mobile promoters: the case of primate beta3GAL-T5. Gene. 364:2–12. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mager DL, Hunter DG, Schertzer M and Freeman JD: Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics. 59:255–263. 1999. View Article : Google Scholar : PubMed/NCBI | |
Baust C, Seifarth W, Germaier H, Hehlmann R and Leib-Mosch C: HERV-K-T47D-Related long terminal repeats mediate polyadenylation of cellular transcripts. Genomics. 66:98–103. 2000. View Article : Google Scholar : PubMed/NCBI | |
Samuelson LC, Wiebauer K, Snow CM and Meisler MH: Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Mol Cell Biol. 10:2513–2520. 1990.PubMed/NCBI | |
Domansky AN, Kopantzev EP, Snezhkov EV, Lebedev YB, Leib-Mosch C and Sverdlov ED: Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett. 472:191–195. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ruda VM, Akopov SB, Trubetskoy DO, et al: Tissue specificity of enhancer and promoter activities of a HERV-K(HML-2) LTR. Virus Res. 104:11–16. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kapitonov VV and Jurka J: The long terminal repeat of an endogenous retrovirus induces alternative splicing and encodes an additional carboxy-terminal sequence in the human leptin receptor. J Mol Evol. 48:248–251. 1999. View Article : Google Scholar | |
Kato N, Pfeifer-Ohlsson S, Kato M, Larsson E, Rydnert J, Ohlsson R and Cohen M: Tissue-specific expression of human provirus ERV3 mRNA in human placenta: two of the three ERV3 mRNAs contain human cellular sequences. J Virol. 61:2182–2191. 1987.PubMed/NCBI | |
Kjellman C, Sjogren HO, Salford LG and Widegren B: HERV-F (XA34) is a full-length human endogenous retrovirus expressed in placental and fetal tissues. Gene. 239:99–107. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mallet F, Bouton O, Prudhomme S, et al: The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA. 101:1731–1736. 2004. View Article : Google Scholar : PubMed/NCBI | |
Prudhomme S, Oriol G and Mallet F: A retroviral promoter and a cellular enhancer define a bipartite element which controls env ERVWE1 placental expression. J Virol. 78:12157–12168. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu M and Eiden MV: Role of human endogenous retroviral long terminal repeats (LTRs) in maintaining the integrity of the human germ line. Viruses. 3:901–905. 2011. View Article : Google Scholar : PubMed/NCBI | |
Landry JR and Mager DL: Functional analysis of the endogenous retroviral promoter of the human endothelin B receptor gene. J Virol. 77:7459–7466. 2003. View Article : Google Scholar : PubMed/NCBI | |
Seidl C, Donner H, Petershofen E, Usadel KH, Seifried E, Kaltwasser JP and Badenhoop K: An endogenous retroviral long terminal repeat at the HLA-DQB1 gene locus confers susceptibility to rheumatoid arthritis. Hum Immunol. 60:63–68. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pascual M, Martin J, Nieto A, Giphart MJ, van der Slik AR, de Vries RR and Zanelli E: Distribution of HERV-LTR elements in the 5′-flanking region of HLA-DQB1 and association with autoimmunity. Immunogenetics. 53:114–118. 2001.PubMed/NCBI | |
Hegyi H: GABBR1 has a HERV-W LTR in its regulatory region - a possible implication for schizophrenia. Biol Direct. 8:52013. View Article : Google Scholar : PubMed/NCBI | |
Kamp C, Hirschmann P, Voss H, Huellen K and Vogt PH: Two long homologous retroviral sequence blocks in proximal Yq11 cause AZFa microdeletions as a result of intrachromosomal recombination events. Hum Mol Genet. 9:2563–2572. 2000. View Article : Google Scholar | |
Goering W, Ribarska T and Schulz WA: Selective changes of retroelement expression in human prostate cancer. Carcinogenesis. 32:1484–1492. 2011. View Article : Google Scholar : PubMed/NCBI | |
Armbruester V, Sauter M, Krautkraemer E, et al: A novel gene from the human endogenous retrovirus K expressed in transformed cells. Clin Cancer Res. 8:1800–1807. 2002.PubMed/NCBI | |
Chen T, Meng Z, Gan Y, et al: The viral oncogene Np9 acts as a critical molecular switch for co-activating beta-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia. Jan 11–2013.(Epub ahead of print). View Article : Google Scholar | |
Boese A, Sauter M, Galli U, et al: Human endogenous retrovirus protein cORF supports cell transformation and associates with the promyelocytic leukemia zinc finger protein. Oncogene. 19:4328–4336. 2000. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Kaye S, Francis N, Peston D, Gore M, McClure M and Bunker C: Human endogenous retrovirus K (HERV-K) rec mRNA is expressed in primary melanoma but not in benign naevi or normal skin. Pigment Cell Melanoma Res. 26:426–428. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sin HS, Huh JW, Kim DS, et al: Endogenous retrovirus-related sequences provide an alternative transcript of MCJ genes in human tissues and cancer cells. Genes Genet Syst. 81:333–339. 2006. View Article : Google Scholar : PubMed/NCBI | |
Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA and Mager DL: Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet. 3:e102007. View Article : Google Scholar : PubMed/NCBI | |
Lengauer C, Kinzler KW and Vogelstein B: Genetic instabilities in human cancers. Nature. 396:643–649. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Gan CM, Zhang X, et al: A multidimensional analysis of genes mutated in breast and colorectal cancers. Genome Res. 17:1304–1318. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schulte AM, Lai S, Kurtz A, Czubayko F, Riegel AT and Wellstein A: Human trophoblast and choriocarcinoma expression of the growth factor pleiotrophin attributable to germ-line insertion of an endogenous retrovirus. Proc Natl Acad Sci USA. 93:14759–14764. 1996. View Article : Google Scholar | |
Stoye JP: Endogenous retroviruses: still active after all these years? Curr Biol. 11:R914–R916. 2001.PubMed/NCBI | |
Romanish MT, Cohen CJ and Mager DL: Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol. 20:246–253. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jha AR, Pillai SK, York VA, et al: Cross-sectional dating of novel haplotypes of HERV-K 113 and HERV-K 115 indicate these proviruses originated in Africa before Homo sapiens. Mol Biol Evol. 26:2617–2626. 2009. View Article : Google Scholar : PubMed/NCBI | |
Turner G, Barbulescu M, Su M, Jensen-Seaman MI, Kidd KK and Lenz J: Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol. 11:1531–1535. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dangel AW, Mendoza AR, Baker BJ, Daniel CM, Carroll MC, Wu LC and Yu CY: The dichotomous size variation of human complement C4 genes is mediated by a novel family of endogenous retroviruses, which also establishes species-specific genomic patterns among Old World primates. Immunogenetics. 40:425–436. 1994. View Article : Google Scholar | |
Burmeister T, Ebert AD, Pritze W, Loddenkemper C, Schwartz S and Thiel E: Insertional polymorphisms of endogenous HERV-K113 and HERV-K115 retroviruses in breast cancer patients and age-matched controls. AIDS Res Hum Retroviruses. 20:1223–1229. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang-Johanning F, Radvanyi L, Rycaj K, et al: Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients. Cancer Res. 68:5869–5877. 2008. View Article : Google Scholar : PubMed/NCBI | |
Contreras-Galindo R, Kaplan MH, Leissner P, et al: Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol. 82:9329–9336. 2008. View Article : Google Scholar : PubMed/NCBI | |
Golan M, Hizi A, Resau JH, Yaal-Hahoshen N, Reichman H, Keydar I and Tsarfaty I: Human endogenous retrovirus (HERV-K) reverse transcriptase as a breast cancer prognostic marker. Neoplasia. 10:521–533. 2008.PubMed/NCBI | |
Gimenez J, Montgiraud C, Pichon JP, et al: Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control. Nucleic Acids Res. 38:2229–2246. 2010. View Article : Google Scholar | |
Liang Q, Xu Z, Xu R, Wu L and Zheng S: Expression patterns of non-coding spliced transcripts from human endogenous retrovirus HERV-H elements in colon cancer. PLoS One. 7:e299502012. View Article : Google Scholar : PubMed/NCBI | |
Stengel S, Fiebig U, Kurth R and Denner J: Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. Genes Chromosomes Cancer. 49:401–411. 2010. View Article : Google Scholar : PubMed/NCBI | |
Buzdin AA, Lebedev IuB and Sverdlov ED: Human genome-specific HERV-K intron LTR genes have a random orientation relative to the direction of transcription, and, possibly, participated in antisense gene expression regulation. Bioorg Khim. 29:103–106. 2003.(In Russian). | |
Li F, Nellaker C, Yolken RH and Karlsson H: A systematic evaluation of expression of HERV-W elements; influence of genomic context, viral structure and orientation. BMC Genomics. 12:222011. View Article : Google Scholar : PubMed/NCBI | |
Gosenca D, Gabriel U, Steidler A, et al: HERV-E-mediated modulation of PLA2G4A transcription in urothelial carcinoma. PLoS One. 7:e493412012. View Article : Google Scholar : PubMed/NCBI | |
Kim DS and Hahn Y: Human-specific antisense transcripts induced by the insertion of transposable element. Int J Mol Med. 26:151–157. 2010.PubMed/NCBI | |
Xu L, Elkahloun AG, Candotti F, et al: A novel function of RNAs arising from the long terminal repeat of human endogenous retrovirus 9 in cell cycle arrest. J Virol. 87:25–36. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gaudray G, Gachon F, Basbous J, Biard-Piechaczyk M, Devaux C and Mesnard JM: The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J Virol. 76:12813–12822. 2002. View Article : Google Scholar : PubMed/NCBI | |
Arnold J, Zimmerman B, Li M, Lairmore MD and Green PL: Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation. Blood. 112:3788–3797. 2008. View Article : Google Scholar : PubMed/NCBI | |
Katsumata K, Ikeda H, Sato M, et al: Cytokine regulation of env gene expression of human endogenous retrovirus-R in human vascular endothelial cells. Clin Immunol. 93:75–80. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lee JR, Ahn K, Kim YJ, Jung YD and Kim HS: Radiation-induced human endogenous retrovirus (HERV)-R env gene expression by epigenetic control. Radiat Res. 178:379–384. 2012. View Article : Google Scholar : PubMed/NCBI | |
Reiche J, Pauli G and Ellerbrok H: Differential expression of human endogenous retrovirus K transcripts in primary human melanocytes and melanoma cell lines after UV irradiation. Melanoma Res. 20:435–440. 2010.PubMed/NCBI | |
Toufaily C, Landry S, Leib-Mosch C, Rassart E and Barbeau B: Activation of LTRs from different human endogenous retrovirus (HERV) families by the HTLV-1 tax protein and T-cell activators. Viruses. 3:2146–2159. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kwun HJ, Han HJ, Lee WJ, Kim HS and Jang KL: Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein 0. Virus Res. 86:93–100. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ruprecht K, Obojes K, Wengel V, et al: Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: implications for multiple sclerosis. J Neurovirol. 12:65–71. 2006. View Article : Google Scholar | |
Nellaker C, Yao Y, Jones-Brando L, Mallet F, Yolken RH and Karlsson H: Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology. 3:442006. View Article : Google Scholar : PubMed/NCBI | |
Katoh I, Mirova A, Kurata S, et al: Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. Neoplasia. 13:1081–1092. 2011.PubMed/NCBI | |
Lee YN and Bieniasz PD: Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog. 3:e102007. View Article : Google Scholar : PubMed/NCBI | |
Lee JW and Kim HS: Endogenous retrovirus HERV-I LTR family in primates: sequences, phylogeny, and evolution. Arch Virol. 151:1651–1658. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yi JM and Kim HS: Evolutionary implication of human endogenous retrovirus HERV-H family. J Hum Genet. 49:215–219. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mager DL and Henthorn PS: Identification of a retrovirus-like repetitive element in human DNA. Proc Natl Acad Sci USA. 81:7510–7514. 1984. View Article : Google Scholar : PubMed/NCBI | |
Blond JL, Beseme F, Duret L, et al: Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol. 73:1175–1185. 1999.PubMed/NCBI | |
Gifford R and Tristem M: The evolution, distribution and diversity of endogenous retroviruses. Virus Genes. 26:291–315. 2003. View Article : Google Scholar : PubMed/NCBI | |
Strazzullo M, Parisi T, Di Cristofano A, Rocchi M and La Mantia G: Characterization and genomic mapping of chimeric ERV9 endogenous retroviruses-host gene transcripts. Gene. 206:77–83. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tonjes RR, Czauderna F and Kurth R: Genome-wide screening, cloning, chromosomal assignment, and expression of full-length human endogenous retrovirus type K. J Virol. 73:9187–9195. 1999.PubMed/NCBI | |
Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW and Johanning GL: Quantitation of HERV-K env gene expression and splicing in human breast cancer. Oncogene. 22:1528–1535. 2003. View Article : Google Scholar : PubMed/NCBI | |
Herbst H, Sauter M and Mueller-Lantzsch N: Expression of human endogenous retrovirus K elements in germ cell and trophoblastic tumors. Am J Pathol. 149:1727–1735. 1996.PubMed/NCBI | |
Huh JW, Kim DS, Kang DW, et al: Transcriptional regulation of GSDML gene by antisense-oriented HERV-H LTR element. Arch Virol. 153:1201–1205. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Yang J, Xing G, Sun Q, Zhang L and He F: Expression of GSDML associates with tumor progression in uterine cervix cancer. Transl Oncol. 1:73–83. 2008. View Article : Google Scholar : PubMed/NCBI | |
Backman SA, Ghazarian D, So K, et al: Early onset of neoplasia in the prostate and skin of mice with tissue-specific deletion of Pten. Proc Natl Acad Sci USA. 101:1725–1730. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tsirmoula S, Dimas K, Hatziapostolou M, Lamprou M, Ravazoula P and Papadimitriou E: Implications of pleiotrophin in human PC3 prostate cancer cell growth in vivo. Cancer Sci. 103:1826–1832. 2012. View Article : Google Scholar : PubMed/NCBI | |
Landry JR, Rouhi A, Medstrand P and Mager DL: The Opitz syndrome gene Mid1 is transcribed from a human endogenous retroviral promoter. Mol Biol Evol. 19:1934–1942. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kowalski PE, Freeman JD and Mager DL: Intergenic splicing between a HERV-H endogenous retrovirus and two adjacent human genes. Genomics. 57:371–379. 1999. View Article : Google Scholar : PubMed/NCBI | |
Gebefügi E, Brunmeir R, Weierich C, Wolff H, Brack-Werner R and Leib M: Activation of a HERV-H LTR induces expression of an aberrant calbindin protein in human prostate carcinoma cells. Retrovirology. 6(Suppl 2): P482009. |