1
|
Ahmed AM: History of diabetes mellitus.
Saudi Med J. 23:373–378. 2002.
|
2
|
International Diabetes Federation. The
Global Burden. IDR Diabetes Atlas. 5th edition. 2011, http://www.idf.org/diabetesatlas/5e/the-global-burden.
|
3
|
Himsworth HP: Diatebetes mellitus: its
differentiation into insulin-sensitive and insulin-insensitive
types. Lancet. 127–130. 1936.
|
4
|
Centers for Disease Control Prevention
(CDC). 2011 National Diabetes Fact Sheet Publications Division of
Diabetes Translation. U.S. Department of Health and Human Services,
Centers for Disease Control and Prevention; Atlanta, GA: 2011,
http://www.cdc.gov/diabetes/pubs/factsheet11.htm.
|
5
|
Reaven GM: Banting lecture 1988. Role of
insulin resistance in human disease. Diabetes. 37:1595–1607. 1988.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Ripsin CM, Kang H and Urban RJ: Management
of blood glucose in type 2 diabetes mellitus. Am Fam Physician.
79:29–36. 2009.PubMed/NCBI
|
7
|
Hu FB, Manson JE, Stampfer MJ, Colditz G,
Liu S, Solomon CG and Willett WC: Diet, lifestyle, and the risk of
type 2 diabetes mellitus in women. N Engl J Med. 345:790–797. 2001.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Centers for Disease Control and Prevention
(CDC). Prevalence of Overweight and Obesity Among Adults with
Diagnosed Diabetes - United States, 1988–1994 and 1999–2002.
Morbidity and Mortality Weekly Report (MMWR). 53:pp. 1066–1068.
2004, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5345a2.htm.
|
9
|
Lang IA, Galloway TS, Scarlett A, Henley
WE, Depledge M, Wallace RB and Melzer D: Association of urinary
bisphenol A concentration with medical disorders and laboratory
abnormalities in adults. JAMA. 300:1303–1310. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tigerstedt R and Bergman PG: Niere und
Kreislauf. Skand Arch Physiol. 8:223–271. 1898. View Article : Google Scholar
|
11
|
Skeggs LT Jr, Kahn JR and Shumway NP: The
preparation and function of the hypertension-converting enzyme. J
Exp Med. 103:295–299. 1956. View Article : Google Scholar : PubMed/NCBI
|
12
|
Touyz RM and Schiffrin EL: Signal
transduction mechanisms mediating the physiological and
pathophysiological actions of angiotensin II in vascular smooth
muscle cells. Pharmacol Rev. 52:639–672. 2000.PubMed/NCBI
|
13
|
Zimmerman MC, Lazartigues E, Lang JA,
Sinnayah P, Ahmad IM, Spitz DR and Davisson RL: Superoxide mediates
the actions of angiotensin II in the central nervous system. Circ
Res. 91:1038–1045. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tipnis SR, Hooper NM, Hyde R, Karran E,
Christie G and Turner AJ: A human homolog of angiotensin-converting
enzyme. Cloning and functional expression as a
captopril-insensitive carboxypeptidase. J Biol Chem.
275:33238–33243. 2000. View Article : Google Scholar
|
15
|
Donoghue M, Hsieh F, Baronas E, Godbout K,
Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan
R, Breitbart RE and Acton S: A novel angiotensin-converting
enzyme-related carboxypeptidase (ACE2) converts angiotensin I to
angiotensin 1–9. Circ Res. 87:E1–E9. 2000.
|
16
|
Rice GI, Thomas DA, Grant PJ, Turner AJ
and Hooper NM: Evaluation of angiotensin-converting enzyme (ACE),
its homologue ACE2 and neprilysin in angiotensin peptide
metabolism. Biochem J. 383:45–51. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chappell MC, Modrall JG, Diz DI and
Ferrario CM: Novel aspects of the renal renin-angiotensin system:
angiotensin-(1-7), ACE2 and blood pressure regulation. Contrib
Nephrol. 143:77–89. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Santos RA and Ferreira AJ:
Angiotensin-(1-7) and the renin-angiotensin system. Curr Opin
Nephrol Hypertens. 16:122–128. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bank U, Tadje J, Täger M, Wolke C,
Bukowska A, Ittenson A, Reinhold D, Helmuth M, Ansorge S,
Shakespeare A, Vieth M, Malfertheiner P, Naumann M and Lendeckel U:
Inhibition of alanyl-aminopeptidase on
CD4+CD25+ regulatory T-cells enhances
expression of FoxP3 and TGF-β1 and ameliorates acute colitis in
mice. Int J Mol Med. 20:483–492. 2007.PubMed/NCBI
|
20
|
Wolke C, Tadje J, Bukowska A, Täger M,
Bank U, Ittenson A, Ansorge S and Lendeckel U: Assigning the
phenotype of a natural regulatory T-cell to the human T-cell line,
KARPAS-299. Int J Mol Med. 17:275–278. 2006.PubMed/NCBI
|
21
|
Lendeckel U, Arndt M, Frank K, Wex T and
Ansorge S: Role of alanyl aminopeptidase in growth and function of
human T cells (Review). Int J Mol Med. 4:17–27. 1999.PubMed/NCBI
|
22
|
Albiston AL, McDowall SG, Matsacos D, Sim
P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly
LM and Chai SY: Evidence that the angiotensin IV (AT(4)) receptor
is the enzyme insulin-regulated aminopeptidase. J Biol Chem.
276:48623–48626. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jordens I, Molle D, Xiong W, Keller SR and
McGraw TE: Insulin-regulated aminopeptidase is a key regulator of
GLUT4 trafficking by controlling the sorting of GLUT4 from
endosomes to specialized insulin-regulated vesicles. Mol Biol Cell.
21:2034–2044. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Takeuchi M, Itakura A, Okada M, Mizutani S
and Kikkawa F: Impaired insulin-regulated membrane aminopeptidase
translocation to the plasma membrane in adipocytes of Otsuka Long
Evans Tokushima Fatty rats. Nagoya J Med Sci. 68:155–163.
2006.PubMed/NCBI
|
25
|
Keller SR, Davis AC and Clairmont KB: Mice
deficient in the insulin-regulated membrane aminopeptidase show
substantial decreases in glucose transporter GLUT4 levels but
maintain normal glucose homeostasis. J Biol Chem. 277:17677–17686.
2002. View Article : Google Scholar
|
26
|
Siebelmann M, Wensing J and Verspohl EJ:
The impact of Ang II and IV on INS-1 cells and on blood glucose and
plasma insulin. J Recept Signal Transduct Res. 30:234–245. 2010.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wong YC, Sim MK and Lee KO:
Des-aspartate-angiotensin-I and angiotensin IV improve glucose
tolerance and insulin signalling in diet-induced hyperglycaemic
mice. Biochem Pharmacol. 82:1198–1208. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Paul M, Poyan Mehr A and Kreutz R:
Physiology of local renin-angiotensin systems. Physiol Rev.
86:747–803. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Leung PS: The physiology of a local
renin-angiotensin system in the pancreas. J Physiol. 580:31–37.
2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lavoie JL and Sigmund CD: Minireview:
overview of the renin-angiotensin system - an endocrine and
paracrine system. Endocrinology. 144:2179–2183. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ribeiro-Oliveira A Jr, Nogueira AI,
Pereira RM, Boas WW, Dos Santos RA and Simões e Silva AC: The
renin-angiotensin system and diabetes: an update. Vasc Health Risk
Manag. 4:787–803. 2008.
|
32
|
Ganten D, Marquez-Julio A, Granger P,
Hayduk K, Karsunky KP, Boucher R and Genest J: Renin in dog brain.
Am J Physiol. 221:1733–1737. 1971.PubMed/NCBI
|
33
|
Yusuf S, Sleight P, Pogue J, Bosch J,
Davies R and Dagenais G: Effects of an
angiotensin-converting-enzyme inhibitor, ramipril, on
cardiovascular events in high-risk patients. The Heart Outcomes
Prevention Evaluation Study Investigators. N Engl J Med.
342:145–153. 2000. View Article : Google Scholar
|
34
|
Jarvis S: Angiotensin receptor blockers in
clinical practice-implications of the ONTARGET study. J Int Med
Res. 40:10–17. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Folli F, Saad MJ, Velloso L, Hansen H,
Carandente O, Feener EP and Kahn CR: Crosstalk between insulin and
angiotensin II signalling systems. Exp Clin Endocrinol Diabetes.
107:133–139. 1999. View Article : Google Scholar : PubMed/NCBI
|
36
|
Nakashima H, Suzuki H, Ohtsu H, Chao JY,
Utsunomiya H, Frank GD and Eguchi S: Angiotensin II regulates
vascular and endothelial dysfunction: recent topics of angiotensin
II type-1 receptor signaling in the vasculature. Curr Vasc
Pharmacol. 4:67–78. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Passos-Silva DG, Verano-Braga T and Santos
RA: Angiotensin-(1-7): beyond the cardio-renal actions. Clin Sci
(Lond). 124:443–456. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Santos SH, Fernandes LR, Mario EG,
Ferreira AV, Pôrto LC, Alvarez-Leite JI, Botion LM, Bader M,
Alenina N and Santos RA: Mas deficiency in FVB/N mice produces
marked changes in lipid and glycemic metabolism. Diabetes.
57:340–347. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Giani JF, Mayer MA, Muñoz MC, Silberman
EA, Höcht C, Taira CA, Gironacci MM, Turyn D and Dominici FP:
Chronic infusion of angiotensin-(1-7) improves insulin resistance
and hypertension induced by a high-fructose diet in rats. Am J
Physiol Endocrinol Metab. 296:E262–E271. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu C, Lv XH, Li HX, Cao X, Zhang F, Wang
L, Yu M and Yang JK: Angiotensin-(1-7) suppresses oxidative stress
and improves glucose uptake via Mas receptor in adipocytes. Acta
Diabetol. 49:291–299. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bradford MM: A rapid and sensitive method
for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal Biochem. 72:248–254.
1976. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chen H, Roques BP and Fournié-Zaluski MC:
Design of the first highly potent and selective aminopeptidase N
(EC 3.4.11.2) inhibitor. Bioorg Med Chem Lett. 9:1511–1516. 1999.
View Article : Google Scholar
|
43
|
Dzau VJ, Bernstein K, Celermajer D, Cohen
J, Dahlöf B, Deanfield J, Diez J, Drexler H, Ferrari R, van Gilst
W, Hansson L, Hornig B, Husain A, Johnston C, Lazar H, Lonn E,
Lüscher T, Mancini J, Mimran A, Pepine C, Rabelink T, Remme W,
Ruilope L, Ruzicka M, Schunkert H, Swedberg K, Unger T, Vaughan D
and Weber M; Working Group on Tissue Angiotensin-converting enzyme,
International Society of Cardiovascular Pharmacotherapy. The
relevance of tissue angiotensin-converting enzyme: manifestations
in mechanistic and endpoint data. Am J Cardiol. 88:1L–20L. 2001.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Goossens GH, Blaak EE and van Baak MA:
Possible involvement of the adipose tissue renin-angiotensin system
in the pathophysiology of obesity and obesity-related disorders.
Obes Rev. 4:43–55. 2003. View Article : Google Scholar : PubMed/NCBI
|
45
|
Prasannarong M, Santos FR and Henriksen
EJ: ANG-(1-7) reduces ANG II-induced insulin resistance by
enhancing Akt phosphorylation via a Mas receptor-dependent
mechanism in rat skeletal muscle. Biochem Biophys Res Commun.
426:369–373. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Tikellis C, Cooper ME and Thomas MC: Role
of the renin-angiotensin system in the endocrine pancreas:
implications for the development of diabetes. Int J Biochem Cell
Biol. 38:737–751. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
McClenaghan NH, Barnett CR, Ah-Sing E,
Abdel-Wahab YH, O’Harte FP, Yoon TW, Swanston-Flatt SK and Flatt
PR: Characterization of a novel glucose-responsive
insulin-secreting cell line, BRIN-BD11, produced by electrofusion.
Diabetes. 45:1132–1140. 1996. View Article : Google Scholar : PubMed/NCBI
|
48
|
Tahmasebi M, Puddefoot JR, Inwang ER and
Vinson GP: The tissue renin-angiotensin system in human pancreas. J
Endocrinol. 161:317–322. 1999. View Article : Google Scholar : PubMed/NCBI
|
49
|
Tikellis C, Wookey PJ, Candido R,
Andrikopoulos S, Thomas MC and Cooper ME: Improved islet morphology
after blockade of the renin-angiotensin system in the ZDF rat.
Diabetes. 53:989–997. 2004. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lau T, Carlsson PO and Leung PS: Evidence
for a local angiotensin-generating system and dose-dependent
inhibition of glucose-stimulated insulin release by angiotensin II
in isolated pancreatic islets. Diabetologia. 47:240–248. 2004.
View Article : Google Scholar
|
51
|
Chu KY, Lau T, Carlsson PO and Leung PS:
Angiotensin II type 1 receptor blockade improves beta-cell function
and glucose tolerance in a mouse model of type 2 diabetes.
Diabetes. 55:367–374. 2006. View Article : Google Scholar : PubMed/NCBI
|
52
|
Regoli M, Bendayan M, Fonzi L, Sernia C
and Bertelli E: Angiotensinogen localization and secretion in the
rat pancreas. J Endocrinol. 179:81–89. 2003. View Article : Google Scholar : PubMed/NCBI
|
53
|
Chu KY, Cheng Q, Chen C, Au LS, Seto SW,
Tuo Y, Motin L, Kwan YW and Leung PS: Angiotensin II exerts
glucose-dependent effects on Kv currents in mouse pancreatic
beta-cells via angiotensin II type 2 receptors. Am J Physiol Cell
Physiol. 298:C313–C323. 2010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wong PF, Lee SS and Cheung WT:
Immunohistochemical colocalization of type II angiotensin receptors
with somatostatin in rat pancreas. Regul Pept. 117:195–205. 2004.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Bindom SM and Lazartigues E: The sweeter
side of ACE2: physiological evidence for a role in diabetes. Mol
Cell Endocrinol. 302:193–202. 2009. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kobayashi H, Mitsui T, Nomura S, Ohno Y,
Kadomatsu K, Muramatsu T, Nagasaka T and Mizutani S: Expression of
glucose transporter 4 in the human pancreatic islet of Langerhans.
Biochem Biophys Res Commun. 314:1121–1125. 2004. View Article : Google Scholar : PubMed/NCBI
|
57
|
Kobayashi H, Nomura S, Mitsui T, Ito T,
Kuno N, Ohno Y, Kadomatsu K, Muramatsu T, Nagasaka T and Mizutani
S: Tissue distribution of placental leucine
aminopeptidase/oxytocinase during mouse pregnancy. J Histochem
Cytochem. 52:113–121. 2004. View Article : Google Scholar : PubMed/NCBI
|
58
|
Lupi R, Del Guerra S, Bugliani M, Boggi U,
Mosca F, Torri S, Del Prato S and Marchetti P: The direct effects
of the angiotensin-converting enzyme inhibitors, zofenoprilat and
enalaprilat, on isolated human pancreatic islets. Eur J Endocrinol.
154:355–361. 2006. View Article : Google Scholar : PubMed/NCBI
|
59
|
Leung KK and Leung PS: Effects of
hyperglycemia on angiotensin II receptor type 1 expression and
insulin secretion in an INS-1E pancreatic beta-cell line. JOP.
9:290–299. 2008.PubMed/NCBI
|
60
|
Ko SH, Hong OK, Kim JW, Ahn YB, Song KH,
Cha BY, Son HY, Kim MJ, Jeong IK and Yoon KH: High glucose
increases extracellular matrix production in pancreatic stellate
cells by activating the renin-angiotensin system. J Cell Biochem.
98:343–355. 2006. View Article : Google Scholar : PubMed/NCBI
|
61
|
Muangman P, Tamura RN and Gibran NS:
Antioxidants inhibit fatty acid and glucose-mediated induction of
neutral endopeptidase gene expression in human microvascular
endothelial cells. J Am Coll Surg. 200:208–215. 2005. View Article : Google Scholar
|
62
|
Muangman P, Spenny ML, Tamura RN and
Gibran NS: Fatty acids and glucose increase neutral endopeptidase
activity in human microvascular endothelial cells. Shock.
19:508–512. 2003. View Article : Google Scholar : PubMed/NCBI
|
63
|
Coelho MS, Lopes KL, Freitas Rde A, de
Oliveira-Sales EB, Bergasmaschi CT, Campos RR, Casarini DE, Carmona
AK, Araújo Mda S, Heimann JC and Dolnikoff MS: High sucrose intake
in rats is associated with increased ACE2 and angiotensin-(1-7)
levels in the adipose tissue. Regul Pept. 162:61–67. 2010.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Mohammed AM, Syeda K, Hadden T and Kowluru
A: Upregulation of phagocyte-like NADPH oxidase by cytokines in
pancreatic beta-cells: attenuation of oxidative and nitrosative
stress by 2-bromopalmitate. Biochem Pharmacol. 85:109–114. 2013.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Syed I, Kyathanahalli CN, Jayaram B,
Govind S, Rhodes CJ, Kowluru RA and Kowluru A: Increased
phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic
ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in
mitochondrial dysregulation in the diabetic islet. Diabetes.
60:2843–2852. 2011. View Article : Google Scholar : PubMed/NCBI
|
66
|
Michalska M, Wolf G, Walther R and
Newsholme P: Effects of pharmacological inhibition of NADPH oxidase
or iNOS on pro-inflammatory cytokine, palmitic acid or
H2O2-induced mouse islet or clonal pancreatic
β-cell dysfunction. Biosci Rep. 30:445–453. 2010. View Article : Google Scholar : PubMed/NCBI
|
67
|
Abdel-Rahman EM, Abadir PM and Siragy HM:
Regulation of renal 12(S)-hydroxyeicosatetraenoic acid in diabetes
by angiotensin AT1 and AT2 receptors. Am J Physiol Regul Integr
Comp Physiol. 295:R1473–R1478. 2008. View Article : Google Scholar : PubMed/NCBI
|
68
|
Carlsson PO, Berne C and Jansson L:
Angiotensin II and the endocrine pancreas: effects on islet blood
flow and insulin secretion in rats. Diabetologia. 41:127–133. 1998.
View Article : Google Scholar : PubMed/NCBI
|
69
|
Giani JF, Gironacci MM, Muñoz MC, Peña C,
Turyn D and Dominici FP: Angiotensin-(1-7) stimulates the
phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role
of the AT1 and Mas receptors. Am J Physiol Heart Circ Physiol.
293:H1154–1163. 2007. View Article : Google Scholar : PubMed/NCBI
|