The role of the CXCL12-CXCR4/CXCR7 axis in the progression and metastasis of bone sarcomas (Review)
- Authors:
- Yu-Xin Liao
- Cheng-Hao Zhou
- Hui Zeng
- Dong-Qing Zuo
- Zhuo‑Ying Wang
- Fei Yin
- Ying-Qing Hua
- Zheng-Dong Cai
-
Affiliations: Shanghai Bone Cancer Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China, Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China - Published online on: October 11, 2013 https://doi.org/10.3892/ijmm.2013.1521
- Pages: 1239-1246
This article is mentioned in:
Abstract
Oda Y, Tateishi N, Matono H, et al: Chemokine receptor CXCR4 expression is correlated with VEGF expression and poor survival in soft-tissue sarcoma. Int J Cancer. 124:1852–1859. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim RH, Li BD and Chu QD: The role of chemokine receptor CXCR4 in the biologic behavior of human soft tissue sarcoma. Sarcoma. 2011:5937082011.PubMed/NCBI | |
Mirabello L, Troisi RJ and Savage SA: Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 115:1531–1543. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mankin HJ, Hornicek FJ, Rosenberg AE, Harmon DC and Gebhardt MC: Survival data for 648 patients with osteosarcoma treated at one institution. Clin Orthop Relat Res. 429:286–291. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bentzen SM: Prognostic factor studies in oncology: osteosarcoma as a clinical example. Int J Radiat Oncol Biol Phys. 49:513–518. 2001. View Article : Google Scholar : PubMed/NCBI | |
Namløs HM, Kresse SH, Müller CR, et al: Global gene expression profiling of human osteosarcomas reveals metastasis-associated chemokine pattern. Sarcoma. 2012:6390382012.PubMed/NCBI | |
Clark JC, Akiyama T, Dass CR and Choong PF: New clinically relevant, orthotopic mouse models of human chondrosarcoma with spontaneous metastasis. Cancer Cell Int. 10:202010. View Article : Google Scholar : PubMed/NCBI | |
Hemmati M, Abbaspour A, Alizadeh AM, et al: Rat xenograft chondrosarcoma development by human tissue fragment. Exp Oncol. 33:52–54. 2011.PubMed/NCBI | |
Li TM, Lin TY, Hsu SF, et al: The novel benzimidazole derivative, MPTB, induces cell apoptosis in human chondrosarcoma cells. Mol Carcinog. 50:791–803. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bergh P, Gunterberg B, Meis-Kindblom JM and Kindblom LG: Prognostic factors and outcome of pelvic, sacral, and spinal chondrosarcomas: a center-based study of 69 cases. Cancer. 91:1201–1212. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fiorenza F, Abudu A, Grimer RJ, et al: Risk factors for survival and local control in chondrosarcoma of bone. J Bone Joint Surg Br. 84:93–99. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bruns J, Elbracht M and Niggemeyer O: Chondrosarcoma of bone: an oncological and functional follow-up study. Ann Oncol. 12:859–864. 2001. View Article : Google Scholar : PubMed/NCBI | |
Qureshi A, Ahmad Z, Azam M and Idrees R: Epidemiological data for common bone sarcomas. Asian Pac J Cancer Prev. 11:393–395. 2010.PubMed/NCBI | |
Gelderblom H, Hogendoorn PC, Dijkstra SD, et al: The clinical approach towards chondrosarcoma. Oncologist. 13:320–329. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ozaki T, Hillmann A, Linder N, Blasius S and Winkelmann W: Metastasis of chondrosarcoma. J Cancer Res Clin Oncol. 122:625–628. 1996. View Article : Google Scholar | |
Berghuis D, Schilham MW, Santos SJ, et al: The CXCR4-CXCL12 axis in Ewing sarcoma: promotion of tumor growth rather than metastatic disease. Clin Sarcoma Res. 2:242012. View Article : Google Scholar : PubMed/NCBI | |
Hauer K, Calzada-Wack J, Steiger K, et al: DKK2 mediates osteolysis, invasiveness, and metastatic spread in Ewing sarcoma. Cancer Res. 73:967–977. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin Z, Zhao C, Han X and Han Y: Wnt5a promotes ewing sarcoma cell migration through upregulating CXCR4 expression. BMC Cancer. 12:4802012. View Article : Google Scholar : PubMed/NCBI | |
Teicher BA and Fricker SP: CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 16:2927–2931. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M and Yamamoto N: Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 60:273–276. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Loberg R and Taichman RS: The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 25:573–587. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Cheng G, Hao M, et al: CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 29:709–722. 2010. View Article : Google Scholar : PubMed/NCBI | |
Le Y, Zhou Y, Iribarren P and Wang J: Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol. 1:95–104. 2004.PubMed/NCBI | |
Liberman J, Sartelet H, Flahaut M, et al: Involvement of the CXCR7/CXCR4/CXCL12 axis in the malignant progression of human neuroblastoma. PLoS One. 7:e436652012. View Article : Google Scholar : PubMed/NCBI | |
Balkwill F: Cancer and the chemokine network. Nat Rev Cancer. 4:540–550. 2004. View Article : Google Scholar | |
Burger JA and Kipps TJ: CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 107:1761–1767. 2006. View Article : Google Scholar : PubMed/NCBI | |
Loetscher P, Moser B and Baggiolini M: Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv Immunol. 74:127–180. 2000. View Article : Google Scholar : PubMed/NCBI | |
Aiuti A, Webb IJ, Bleul C, Springer T and Gutierrez-Ramos JC: The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med. 185:111–120. 1997.PubMed/NCBI | |
Scotton CJ, Wilson JL, Scott K, et al: Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res. 62:5930–5938. 2002.PubMed/NCBI | |
Sun YX, Wang J, Shelburne CE, et al: Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem. 89:462–473. 2003. View Article : Google Scholar : PubMed/NCBI | |
Smith MC, Luker KE, Garbow JR, et al: CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 64:8604–8612. 2004. View Article : Google Scholar : PubMed/NCBI | |
Orimo A, Gupta PB, Sgroi DC, et al: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005. View Article : Google Scholar | |
Zhou Y, Larsen PH, Hao C and Yong VW: CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem. 277:49481–49487. 2002. View Article : Google Scholar : PubMed/NCBI | |
Barbero S, Bonavia R, Bajetto A, et al: Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res. 63:1969–1974. 2003.PubMed/NCBI | |
Hideshima T, Chauhan D, Hayashi T, et al: The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther. 1:539–544. 2002.PubMed/NCBI | |
Ponomaryov T, Peled A, Petit I, et al: Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest. 106:1331–1339. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ceradini DJ, Kulkarni AR, Callaghan MJ, et al: Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 10:858–864. 2004. View Article : Google Scholar : PubMed/NCBI | |
Begley L, Monteleon C, Shah RB, Macdonald JW and Macoska JA: CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell. 4:291–298. 2005. View Article : Google Scholar : PubMed/NCBI | |
Petit I, Szyper-Kravitz M, Nagler A, et al: G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 3:687–694. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chinni SR, Sivalogan S, Dong Z, et al: CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate. 66:32–48. 2006. View Article : Google Scholar : PubMed/NCBI | |
Perissinotto E, Cavalloni G, Leone F, et al: Involvement of chemokine receptor 4/stromal cell-derived factor 1 system during osteosarcoma tumor progression. Clin Cancer Res. 11:490–497. 2005.PubMed/NCBI | |
Feng Y, Broder CC, Kennedy PE and Berger EA: HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 272:872–877. 1996. View Article : Google Scholar | |
Wegner SA, Ehrenberg PK, Chang G, Dayhoff DE, Sleeker AL and Michael NL: Genomic organization and functional characterization of the chemokine receptor CXCR4, a major entry co-receptor for human immunodeficiency virus type 1. J Biol Chem. 273:4754–4760. 1998. View Article : Google Scholar | |
Balkwill F: The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol. 14:171–179. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schioppa T, Uranchimeg B, Saccani A, et al: Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med. 198:1391–1402. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zagzag D, Krishnamachary B, Yee H, et al: Stromal cell-derived factor-1alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res. 65:6178–6188. 2005. View Article : Google Scholar : PubMed/NCBI | |
Phillips RJ, Mestas J, Gharaee-Kermani M, et al: Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem. 280:22473–22481. 2005. | |
Bachelder RE, Wendt MA and Mercurio AM: Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res. 62:7203–7206. 2002.PubMed/NCBI | |
Zagzag D, Lukyanov Y, Lan L, et al: Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest. 86:1221–1232. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li YM, Pan Y, Wei Y, et al: Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell. 6:459–469. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ao M, Franco OE, Park D, Raman D, Williams K and Hayward SW: Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res. 67:4244–4253. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yeger H, Das B, Irwin MS and Baruchel S: Tissue microenvironment modulates CXCR4 expression and tumor metastasis in neuroblastoma. Neoplasia. 9:36–46. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Wang L, Ren T, Xu L and Wen Z: IL-17A/IL-17RA interaction promoted metastasis of osteosarcoma cells. Cancer Biol Ther. 14:155–163. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tang CH, Chuang JY, Fong YC, Maa MC, Way TD and Hung CH: Bone-derived SDF-1 stimulates IL-6 release via CXCR4, ERK and NF-kappaB pathways and promotes osteoclastogenesis in human oral cancer cells. Carcinogenesis. 29:1483–1492. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang CY, Lee CY, Chen MY, et al: Stromal cell-derived factor-1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF-kappaB-dependent pathways. J Cell Physiol. 221:204–212. 2009. View Article : Google Scholar : PubMed/NCBI | |
Balabanian K, Lagane B, Infantino S, et al: The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 280:35760–35766. 2005. View Article : Google Scholar : PubMed/NCBI | |
Burns JM, Summers BC, Wang Y, et al: A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med. 203:2201–2213. 2006. View Article : Google Scholar : PubMed/NCBI | |
Miao Z, Luker KE, Summers BC, et al: CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA. 104:15735–15740. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Shiozawa Y, Wang Y, et al: The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem. 283:4283–4294. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kollmar O, Rupertus K, Scheuer C, et al: CXCR4 and CXCR7 regulate angiogenesis and CT26. WT tumor growth independent from SDF-1. Int J Cancer. 126:1302–1315. 2010.PubMed/NCBI | |
Uto-Konomi A, McKibben B, Wirtz J, et al: CXCR7 agonists inhibit the function of CXCL12 by down-regulation of CXCR4. Biochem Biophys Res Commun. 431:772–776. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liekens S, Schols D and Hatse S: CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des. 16:3903–3920. 2010. View Article : Google Scholar : PubMed/NCBI | |
Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D and Jain RK: CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res. 17:2074–2080. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gustin JA, Ozes ON, Akca H, et al: Cell type-specific expression of the IkappaB kinases determines the significance of phosphatidylinositol 3-kinase/Akt signaling to NF-kappa B activation. J Biol Chem. 279:1615–1620. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chinni SR and Sarkar FH: Selective growth regulatory and pro-apoptotic effects of DIM is mediated by AKT and NF-kappaB pathways in prostate cancer cells. Front Biosci. 10:236–243. 2005. View Article : Google Scholar : PubMed/NCBI | |
Katiyar SK and Meeran SM: Obesity increases the risk of UV radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling. Free Radic Biol Med. 42:299–310. 2007. View Article : Google Scholar : PubMed/NCBI | |
Leelawat K, Leelawat S, Narong S and Hongeng S: Roles of the MEK1/2 and AKT pathways in CXCL12/CXCR4 induced cholangiocarcinoma cell invasion. World J Gastroenterol. 13:1561–1568. 2007. View Article : Google Scholar : PubMed/NCBI | |
Burger M, Glodek A, Hartmann T, et al: Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene. 22:8093–8101. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lai TH, Fong YC, Fu WM, Yang RS and Tang CH: Stromal cell-derived factor-1 increase alphavbeta3 integrin expression and invasion in human chondrosarcoma cells. J Cell Physiol. 218:334–342. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ryu CH, Park SA, Kim SM, et al: Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun. 398:105–110. 2010. View Article : Google Scholar : PubMed/NCBI | |
Heinrich EL, Lee W, Lu J, Lowy AM and Kim J: Chemokine CXCL12 activates dual CXCR4 and CXCR7-mediated signaling pathways in pancreatic cancer cells. J Transl Med. 10:682012. View Article : Google Scholar : PubMed/NCBI | |
Laverdiere C, Hoang BH, Yang R, et al: Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clin Cancer Res. 11:2561–2567. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lin F, Zheng SE, Shen Z, et al: Relationships between levels of CXCR4 and VEGF and blood-borne metastasis and survival in patients with osteosarcoma. Med Oncol. 28:649–653. 2011. View Article : Google Scholar : PubMed/NCBI | |
Baumhoer D, Smida J, Zillmer S, et al: Strong expression of CXCL12 is associated with a favorable outcome in osteosarcoma. Mod Pathol. 25:522–528. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fan TM, Barger AM, Fredrickson RL, Fitzsimmons D and Garrett LD: Investigating CXCR4 expression in canine appendicular osteosarcoma. J Vet Intern Med. 22:602–608. 2008. View Article : Google Scholar : PubMed/NCBI | |
Oda Y, Yamamoto H, Tamiya S, et al: CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: analysis within a group of patients, all of whom developed lung metastasis. Mod Pathol. 19:738–745. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ma Q, Zhou Y, Ma B, et al: The clinical value of CXCR4, HER2 and CD44 in human osteosarcoma: A pilot study. Oncol Lett. 3:797–801. 2012.PubMed/NCBI | |
Bai S, Wang D, Klein MJ and Siegal GP: Characterization of CXCR4 expression in chondrosarcoma of bone. Arch Pathol Lab Med. 135:753–758. 2011.PubMed/NCBI | |
Bennani-Baiti IM, Cooper A, Lawlor ER, et al: Intercohort gene expression co-analysis reveals chemokine receptors as prognostic indicators in Ewing's sarcoma. Clin Cancer Res. 16:3769–3778. 2010. View Article : Google Scholar : PubMed/NCBI | |
Clark JC, Dass CR and Choong PF: A review of clinical and molecular prognostic factors in osteosarcoma. J Cancer Res Clin Oncol. 134:281–297. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Lee CH, Midura BV, et al: Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis. 25:201–211. 2008. View Article : Google Scholar : PubMed/NCBI | |
de Nigris F, Rossiello R, Schiano C, et al: Deletion of Yin Yang 1 protein in osteosarcoma cells on cell invasion and CXCR4/angiogenesis and metastasis. Cancer Res. 68:1797–1808. 2008.PubMed/NCBI | |
Miura K, Uniyal S, Leabu M, et al: Chemokine receptor CXCR4-β1 integrin axis mediates tumorigenesis of osteosarcoma HOS cells. Biochem Cell Biol. 83:36–48. 2005. | |
Hendrix CW, Collier AC, Lederman MM, et al: Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr. 37:1253–1262. 2004. View Article : Google Scholar : PubMed/NCBI | |
De Clercq E: The AMD3100 story: the path to the discovery of a stem cell mobilizer (Mozobil). Biochem Pharmacol. 77:1655–1664. 2009.PubMed/NCBI | |
Devine SM, Flomenberg N, Vesole DH, et al: Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol. 22:1095–1102. 2004.PubMed/NCBI | |
Cashen A, Lopez S, Gao F, et al: A phase II study of plerixafor (AMD3100) plus G-CSF for autologous hematopoietic progenitor cell mobilization in patients with Hodgkin lymphoma. Biol Blood Marrow Transplant. 14:1253–1261. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim HY, Hwang JY, Kim SW, et al: The CXCR4 antagonist AMD3100 has dual effects on survival and proliferation of myeloma cells in vitro. Cancer Res Treat. 42:225–234. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kalatskaya I, Berchiche YA, Gravel S, Limberg BJ, Rosenbaum JS and Heveker N: AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol Pharmacol. 75:1240–1247. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lapteva N, Yang AG, Sanders DE, Strube RW and Chen SY: CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther. 12:84–89. 2005. View Article : Google Scholar : PubMed/NCBI |