1
|
Yang B, Lin H, Xiao J, et al: The
muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic
potential by targeting GJA1 and KCNJ2. Nat Med. 13:486–491. 2007.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Chan PH: Mitochondria and neuronal
death/survival signaling pathways in cerebral ischemia. Neurochem
Res. 29:1943–1949. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Priscilla DH and Prince PS:
Cardioprotective effect of gallic acid on cardiac troponin-T,
cardiac marker enzymes, lipid peroxidation products and
antioxidants in experimentally induced myocardial infarction in
Wistar rats. Chem Biol Interact. 179:118–124. 2009. View Article : Google Scholar
|
4
|
Tanaka M, Mokhtari GK, Terry RD, et al:
Overexpression of human copper/zinc superoxide dismutase (SOD1)
suppresses ischemia-reperfusion injury and subsequent development
of graft coronary artery disease in murine cardiac grafts.
Circulation. 110:II200–II206. 2004. View Article : Google Scholar
|
5
|
Guo J, Li HZ, Wang LC, et al: Increased
expression of calcium-sensing receptors in atherosclerosis confers
hypersensitivity to acute myocardial infarction in rats. Mol Cell
Biochem. 366:345–354. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mao X, Ji C, Sun C, et al: Topiramate
attenuates cerebral ischemia/reperfusion injury in gerbils via
activating GABAergic signaling and inhibiting astrogliosis.
Neurochem Int. 60:39–46. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Muller DN, Mervaala EM, Dechend R, et al:
Angiotensin II (AT(1)) receptor blockade reduces vascular tissue
factor in angiotensin II-induced cardiac vasculopathy. Am J Pathol.
157:111–122. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Speir E: Cytomegalovirus gene regulation
by reactive oxygen species. Agents in atherosclerosis. Ann NY Acad
Sci. 899:363–374. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang R and Tang XC: Neuroprotective
effects of huperzine A. A natural cholinesterase inhibitor for the
treatment of Alzheimer’s disease. Neurosignals. 14:71–82. 2005.
|
10
|
Pollak Y, Gilboa A, Ben-Menachem O,
Ben-Hur T, Soreq H and Yirmiya R: Acetylcholinesterase inhibitors
reduce brain and blood interleukin-1β production. Ann Neurol.
57:741–745. 2005.
|
11
|
Tabet N: Acetylcholinesterase inhibitors
for Alzheimer’s disease: anti-inflammatories in acetylcholine
clothing! Age Ageing. 35:336–338. 2006.
|
12
|
Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I
and Brenner T: Anti-inflammatory properties of cholinergic
up-regulation: A new role for acetylcholinesterase inhibitors.
Neuropharmacology. 50:540–547. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Brenner T, Nizri E, Irony-Tur-Sinai M,
Hamra-Amitay Y and Wirguin I: Acetylcholinesterase inhibitors and
cholinergic modulation in Myasthenia Gravis and neuroinflammation.
J Neuroimmunol. 201–202:121–127. 2008.PubMed/NCBI
|
14
|
Ruan Q, Liu F, Gao Z, et al: The
anti-inflamm-aging and hepatoprotective effects of huperzine A in
D-galactose-treated rats. Mech Ageing Dev. 134:89–97. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Hong-Li S, Lei L, Lei S, et al:
Cardioprotective effects and underlying mechanisms of oxymatrine
against ischemic myocardial injuries of rats. Phytother Res.
22:985–989. 2008. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Ming X, Tongshen W, Delin W and Ronghua Z:
Cardioprotective effect of the compound yangshen granule in rat
models with acute myocardial infarction. Evid Based Complement
Alternat Med. 2012:7171232012.PubMed/NCBI
|
17
|
Katus HA, Remppis A, Scheffold T,
Diederich KW and Kuebler W: Intracellular compartmentation of
cardiac troponin T and its release kinetics in patients with
reperfused and nonreperfused myocardial infarction. Am J Cardiol.
67:1360–1367. 1991. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yamada J, Yoshimura S, Yamakawa H, et al:
Cell permeable ROS scavengers, Tiron and Tempol, rescue PC12 cell
death caused by pyrogallol or hypoxia/reoxygenation. Neurosci Res.
45:1–8. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li Y, Bao Y, Jiang B, et al: Catalpol
protects primary cultured astrocytes from in vitro ischemia-induced
damage. Int J Dev Neurosci. 26:309–317. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Manabat C, Han BH, Wendland M, et al:
Reperfusion differentially induces caspase-3 activation in ischemic
core and penumbra after stroke in immature brain. Stroke.
34:207–213. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu X, Gu J, Fan Y, Shi H and Jiang M:
Baicalin attenuates acute myocardial infarction of rats via
mediating the mitogen-activated protein kinase pathway. Biol Pharm
Bull. 36:988–994. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yu W, Liu Q and Zhu S: Carvacrol protects
against acute myocardial infarction of rats via anti-oxidative and
anti-apoptotic pathways. Biol Pharm Bull. 36:579–584. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Frantz S, Fraccarollo D, Wagner H, et al:
Sustained activation of nuclear factor kappa B and activator
protein 1 in chronic heart failure. Cardiovasc Res. 57:749–756.
2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wong SC, Fukuchi M, Melnyk P, Rodger I and
Giaid A: Induction of cyclooxygenase-2 and activation of nuclear
factor-kappaB in myocardium of patients with congestive heart
failure. Circulation. 98:100–103. 1998. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yoshiyama M, Omura T, Takeuchi K, et al:
Angiotensin blockade inhibits increased JNKs, AP-1 and NF-kappa B
DNA-binding activities in myocardial infarcted rats. J Mol Cell
Cardiol. 33:799–810. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang ZF, Wang J, Zhang HY and Tang XC:
Huperzine A exhibits anti-inflammatory and neuroprotective effects
in a rat model of transient focal cerebral ischemia. J Neurochem.
106:1594–1603. 2008. View Article : Google Scholar : PubMed/NCBI
|