1
|
Atkinson MA and Eisenbarth GS: Type 1
diabetes: new perspectives on disease pathogenesis and treatment.
Lancet. 358:221–229. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Noguchi H: Pancreatic islet
transplantation. World J Gastrointest Surg. 1:16–20. 2009.
View Article : Google Scholar
|
3
|
Matsumoto S: Islet cell transplantation
for Type 1 diabetes. J Diabetes. 2:16–22. 2010. View Article : Google Scholar
|
4
|
Shapiro AM, Lakey JR, Ryan EA, et al:
Islet transplantation in seven patients with type 1 diabetes
mellitus using a glucocorticoid-free immunostippressive regimen. N
Engl J Med. 343:230–238. 2000. View Article : Google Scholar
|
5
|
Wang HW, Lin LM, He HY, et al: Human
umbilical cord mesenchymal stem cells derived from Wharton’s jelly
differentiate into insulin-producing cells in vitro. Chin Med J.
124:1534–1539. 2011.
|
6
|
Jiang J, Au M, Lu K, et al: Generation of
insulin-producing islet-like clusters from human embryonic stem
cells. Stem Cells. 25:1940–1953. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Karnieli O, Izhar-Prato Y, Bulvik S, et
al: Generation of insulin-producing cells from human bone marrow
mesenchymal stem cells by genetic manipulation. Stem Cells.
25:2837–2844. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mueller SM and Glowacki J: Age-related
decline in the osteogenic potential of human bone marrow cells
cultured in three-dimensional collagen sponges. J Cell Biochem.
82:583–590. 2001. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Stenderup K, Justesen J, Clausen C and
Kassem M: Aging is associated with decreased maximal life span and
accelerated senescence of bone marrow stromal cells. Bone.
33:919–926. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xie QP, Huang H, Xu B, et al: Human bone
marrow mesenchymal stem cells differentiate into insulin-producing
cells upon microenvironmental manipulation in vitro.
Differentiation. 7:483–91. 2009.PubMed/NCBI
|
11
|
Shi Y: Generation of functional
insulin-producing cells from human embryonic stem cells in vitro.
Methods Mol Biol. 636:79–85. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Le Blanc K, Tammik L, Sundberg B, et al:
Mesenchymal stem cells inhibit and stimulate mixed lymphocyte
cultures and mitogenic responses independently of the major
histocompatibility complex. Scand J Immunol. 57:11–20. 2003.
|
13
|
Krampera M, Glennie S, Dyson J, et al:
Bone marrow mesenchymal stem cells inhibit the response of naive
and memory antigen-specific T cells to their cognate peptide.
Blood. 101:3722–3729. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Meisel R, Zibert A, Laryea M, et al: Human
bone marrow stromal cells inhibit allogeneic T-cell responses by
indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood.
103:4619–4621. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Alhadlaq A and Mao JJ: Mesenchymal stem
cells: isolation and therapeutics. Stem Cells Dev. 13:436–438.
2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Le Blanc K and Pittenger M: Mesenchymal
stem cells: progress toward promise. Cytotherapy. 7:36–45.
2005.PubMed/NCBI
|
17
|
Beyer Nardi N and da Silva Meirelles L:
Mesenchymal stem cells: isolation, in vitro expansion and
characterization. Handb Exp Pharmacol. 174:249–282. 2006.
|
18
|
Wang HS, Hung SC, Peng ST, et al:
Mesenchymal stem cells in the Wharton’s jelly of the human
umbilical cord. Stem Cells. 22:1330–1337. 2004.
|
19
|
Ma L, Feng XY, Cui BL, et al: Human
umbilical cord Wharton’s Jelly-derived mesenchymal stem cells
differentiation into nerve-like cells. Chin Med J. 118:1987–1993.
2005.
|
20
|
Qian Q, Qian H, Zhang X, et al:
5-Azacytidine induces cardiac differentiation of human umbilical
cord-derived mesenchymal stem cells by activating extracellular
regulated kinase. Stem Cells Dev. 21:67–75. 2012. View Article : Google Scholar
|
21
|
He D, Wang J, Gao Y and Zhang Y:
Differentiation of PDX1 gene-modified human umbilical cord
mesenchymal stem cells into insulin-producing cells in
vitro. Int J Mol Med. 28:1019–1024. 2011.PubMed/NCBI
|
22
|
Huang P, Lin LM, Wu XY, et al:
Differentiation of human umbilical cord Wharton’s jelly-derived
mesenchymal stem cells into germ-like cells in vitro. J Cell
Biochem. 109:747–754. 2010.
|
23
|
Ghio M, Contini P, Negrini S, et al:
Soluble HLA-I-mediated secretion of TGF-beta1 by human NK cells and
consequent down-regulation of anti-tumor cytolytic activity. Eur J
Immunol. 39:3459–3468. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Stumpf AN, van der Meijden ED, van Bergen
CA, et al: Identification of 4 new HLA-DR-restricted minor
histocompatibility antigens as hematopoietic targets in antitumor
immunity. Blood. 114:3684–3692. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Antin JH: Clinical practice. Long-term
care after hematopoietic-cell transplantation in adults. N Engl J
Med. 347:36–42. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Leitner J, Kuschei W,
Grabmeier-Pfistershammer K, et al: T cell stimulator cells, an
efficient and versatile cellular system to assess the role of
costimulatory ligands in the activation of human T cells. J Immunol
Methods. 362:131–141. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shi M, Liu ZW and Wang FS:
Immunomodulatory properties and therapeutic application of
mesenchymal stem cells. Clin Exp Immunol. 164:1–8. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sioud M: New insights into mesenchymal
stromal cell-mediated T-cell suppression through galectins. Scand J
Immunol. 73:79–84. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yagi H, Soto-Gutierrez A, Parekkadan B, et
al: Mesenchymal stem cells: Mechanisms of immunomodulation and
homing. Cell Transplant. 19:667–679. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Aggarwal S and Pittenger MF: Human
mesenchymal stem cells modulate allogeneic immune cell responses.
Blood. 105:1815–1822. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yano S, Kuroda S, Shichinohe H, et al:
Bone marrow stromal cell transplantation preserves gamma
aminobutyric acid receptor function in the injured spinal cord. J
Neurotrauma. 23:1682–1692. 2006. View Article : Google Scholar : PubMed/NCBI
|