1
|
Yang X, Yang L and Zheng H: Hypolipidemic
and antioxidant effects of mulberry (Morus alba L.) fruit in
hyperlipidaemia rats. Food Chem Toxicol. 48:2374–2379. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen PN, Chu SC, Chiou HL, Kuo WH, Chiang
CL and Hsieh YS: Mulberry anthocyanins, cyanidin 3-rutinoside and
cyanidin 3-glucoside, exhibited an inhibitory effect on the
migration and invasion of a human lung cancer cell line. Cancer
Lett. 235:248–259. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kim HG, Ju MS, Shim JS, et al: Mulberry
fruit protects dopaminergic neurons in toxin-induced Parkinson’s
disease models. Br J Nutr. 104:8–16. 2010.PubMed/NCBI
|
4
|
Liu LK, Lee HJ, Shih YW, Chyau CC and Wang
CJ: Mulberry anthocyanin extracts inhibit LDL oxidation and
macrophage-derived foam cell formation induced by oxidative LDL. J
Food Sci. 73:H113–H121. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pawlowska AM, Oleszek W and Braca A:
Quali-quantitative analyses of Flavonoids of Morus nigra L. and
Morus alba L. (Moraceae) fruits. J Agric Food Chem.
56:3377–3380. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Song W, Wang HJ, Bucheli P, Zhang PF, Wei
DZ and Lu YH: Phytochemical profiles of different mulberry
(Morus sp) species from China. J Agric Food Chem.
57:9133–9140. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ribeiro MH: Naringinases: occurrence,
characteristics, and applications. Appl Microbiol Biotechnol.
90:1883–1895. 2011. View Article : Google Scholar
|
8
|
Bram B and Solomons GL: Production of the
enzyme naringinase by Aspergillus niger. Appl Microbiol.
13:842–845. 1965.PubMed/NCBI
|
9
|
Nomura D: Studies on naringinase produced
by Coniothyrium diplodiella. I The properties of naringinase
and the removal of co-existing pectinase from the enzyme
preparation. Enzymologia. 29:272–282. 1965.PubMed/NCBI
|
10
|
Soria F, Ellenrieder G, Grasselli M,
Navarro del Cañizo AA and Cascone O: Fractionation of the
naringinase complex from Aspergillus terreus by dye affinity
chromatography. Biotechnol Lett. 26:1265–1268. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Magario I, Vielhauer O, Neumann A,
Hausmann R and Syldatk C: Kinetic analysis and modeling of the
liquid-liquid conversion of emulsified di-rhamnolipids by
Naringinase from Penicillium decumbens. Biotechnol Bioeng.
102:9–19. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Vila-Real H, Alfaia AJ, Bronze MR, Calado
AR and Ribeiro MH: Enzymatic synthesis of the flavone glucosides,
prunin and isoquercetin, and the aglycones, naringenin and
quercetin, with selective alpha-L-rhamnosidase and
beta-D-glucosidase activities of naringinase. Enzyme Res.
2011:6926182011. View Article : Google Scholar
|
13
|
Theoharides TC and Kalogeromitros D: The
critical role of mast cells in allergy and inflammation. Ann NY
Acad Sci. 1088:78–99. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Theoharides TC, Alysandratos KD, Angelidou
A, et al: Mast cells and inflammation. Biochim Biophys Acta.
1822:21–33. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gilfillan AM and Tkaczyk C: Integrated
signalling pathways for mast-cell activation. Nat Rev Immunol.
6:218–230. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Siraganian RP, McGivney A, Barsumian EL,
Crews FT, Hirata F and Axelrod J: Variants of the rat basophilic
leukemia cell line for the study of histamine release. Fed Proc.
41:30–34. 1982.PubMed/NCBI
|
17
|
Ortega E, Schweitzer-Stenner R and Pecht
I: Possible orientational constraints determine secretory signals
induced by aggregation of IgE receptors on mast cells. EMBO J.
7:4101–4109. 1988.PubMed/NCBI
|
18
|
Funaba M, Ikeda T and Abe M: Degranulation
in RBL-2H3 cells: regulation by calmodulin pathway. Cell Biol Int.
27:879–885. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ikawati Z, Wahyuono S and Maeyama K:
Screening of several Indonesian medicinal plants for their
inhibitory effect on histamine release from RBL-2H3 cells. J
Ethnopharmacol. 75:249–256. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ni H, Chen F, Cai H, Xiao A, You Q and Lu
Y: Characterization and preparation of Aspergillus niger
naringinase for debittering citrus juice. J Food Sci. 77:C1–C7.
2012.
|
21
|
Lee SY, Lee JY, Kang W, et al: Cytochrome
P450-mediated herb-drug interaction potential of Galgeun-tang. Food
Chem Toxicol. 51:343–349. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Morita Y and Siraganian RP: Inhibition of
IgE-mediated histamine release from rat basophilic leukemia cells
and rat mast cells by inhibitors of transmethylation. J Immunol.
127:1339–1344. 1981.PubMed/NCBI
|
23
|
Ishiyama M, Tominaga H, Shiga M, Sasamoto
K, Ohkura Y and Ueno K: A combined assay of cell viability and in
vitro cytotoxicity with a highly water-soluble tetrazolium salt,
neutral red and crystal violet. Biol Pharm Bull. 19:1518–1520.
1996. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yoo JM, Park ES, Kim MR and Sok DE:
Inhibitory effect of N-Acyl dopamines on IgE-mediated allergic
response in RBL-2H3 cells. Lipids. 48:383–393. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Arima M and Fukuda T: Prostaglandin
D2 and T(H)2 inflammation in the pathogenesis
of bronchial asthma. Korean J Intern Med. 26:8–18. 2011.
|
26
|
Nettis E, D’Erasmo M, Di Leo E, et al: The
employment of leukotriene antagonists in cutaneous diseases
belonging to allergological field. Mediators Inflamm.
2010:6281712010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kawakami Y, Kitaura J, Satterthwaite AB,
et al: Redundant and opposing functions of two tyrosine kinases,
Btk and Lyn, in mast cell activation. J Immunol. 165:1210–1219.
2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Roth K, Chen WM and Lin TJ: Positive and
negative regulatory mechanisms in high-affinity IgE
receptor-mediated mast cell activation. Arch Immunol Ther Exp
(Warsz). 56:385–399. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim Y, Lee YS, Hahn JH, et al: Hyaluronic
acid targets CD44 and inhibits FcepsilonRI signaling involving
PKCdelta, Rac1, ROS, and MAPK to exert anti-allergic effect. Mol
Immunol. 45:2537–2547. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Morimoto Y, Yasuhara T, Sugimoto A, et al:
Anti-allergic substances contained in the pollen of Cryptomeria
japonica possess diverse effects on the degranulation of
RBL-2H3 cells. J Pharmacol Sci. 92:291–295. 2003.PubMed/NCBI
|
31
|
Han SJ, Ryu SN, Trinh HT, et al:
Metabolism of cyanidin-3-O-beta-D-glucoside isolated from black
colored rice and its antiscratching behavioral effect in mice. J
Food Sci. 74:H253–H258. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gomez G, Gonzalez-Espinosa C, Odom S, et
al: Impaired FcepsilonRI-dependent gene expression and defective
eicosanoid and cytokine production as a consequence of Fyn
deficiency in mast cells. J Immunol. 175:7602–7610. 2005.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Metcalfe DD: Mast cells and mastocytosis.
Blood. 112:946–956. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ford-Hutchinson AW, Bray MA, Doig MV,
Shipley ME and Smith MJ: Leukotriene B, a potent chemokinetic and
aggregating substance released from polymorphonuclear leukocytes.
Nature. 286:264–265. 1980. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tager AM and Luster AD: BLT1 and BLT2: the
leukotriene B(4) receptors. Prostaglandins Leukot Essent Fatty
Acids. 69:123–134. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gordon JR and Galli SJ: Mast cells as a
source of both preformed and immunologically inducible
TNF-alpha/cachectin. Nature. 346:274–276. 1990.PubMed/NCBI
|