1
|
Balasubramaniam S, Goldstein JL and Brown
MS: Regulation of cholesterol synthesis in rat adrenal gland
through coordinate control of 3-hydroxy-3-methylglutaryl coenzyme A
synthase and reductase activities. Proc Natl Acad Sci USA.
74:1421–1425. 1977. View Article : Google Scholar
|
2
|
Nishikawa T, Mikami K, Saito Y, Tamura Y
and Kumagai A: Studies on cholesterol esterase in the rat adrenal.
Endocrinol. 108:932–936. 1981. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gwynne JT and Mahaffee DD: Rat adrenal
uptake and metabolism of high density lipoprotein cholesteryl
ester. J Biol Chem. 264:8141–8150. 1989.PubMed/NCBI
|
4
|
Li H, Brochu M, Wang SP, Rochdi L, Côté M,
Mitchell G and Gallo-Payet N: Hormone-sensitive lipase deficiency
in mice causes lipid storage in the adrenal cortex and impaired
corticosterone response to corticotropin stimulation. Endocrinol.
143:3333–3340. 2002. View Article : Google Scholar
|
5
|
Azhar S and Reaven E: Scavenger receptor
class BI and selective cholesteryl ester uptake: partners in the
regulation of steroidogenesis. Mol Cell Endocrinol. 195:1–26. 2002.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Connelly MA and Williams DL: SR-BI and HDL
cholesteryl ester metabolism. Endocr Res. 30:697–703. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Miller WL and Bose HS: Early steps in
steroidogenesis: intracellular cholesterol trafficking. J Lipid
Res. 52:2111–2135. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kraemer FB: Adrenal cholesterol
utilization. Mol Cell Endocrinol. 265–266:42–45. 2007.
|
9
|
Trzeciak WH and Boyd GS: Activation of
cholesteryl esterase in bovine adrenal cortex. Eur J Biochem.
46:201–207. 1974. View Article : Google Scholar : PubMed/NCBI
|
10
|
Malendowicz LK: A correlated steorological
and functional studies on the long-term effects of ACTH on rat
adrenal cortex. Folia Histochem Cytobiol. 24:203–211.
1986.PubMed/NCBI
|
11
|
Schimmer BP, Cordova M, Cheng H, Tsao A,
Goryachev AB, Schimmer AD and Morris Q: Global profiles of gene
expression induced by adrenocorticotropin in Y1 mouse adrenal
cells. Endocrinology. 147:2357–2367. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Greep RO and Deane HW: Histological,
cytochemical and physiological observations on the regeneration of
the rat’s adrenal gland following enucleation. Endocrinology.
45:42–56. 1949.PubMed/NCBI
|
13
|
Ingle DJ and Higgins GM: Regeneration of
the adrenal gland following enucleation. Am J Med Sci. 196:232–239.
1938. View Article : Google Scholar
|
14
|
Mitani F, Mukai K, Miyamoto H, Suematsu M
and Ishimura Y: The undifferentiated cell zone is a stem cell zone
in adult rat adrenal cortex. Biochim Biophys Acta. 1619:317–324.
2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Engeland WC and Levay-Young BK: Changes in
the glomerulosa cell phenotype during adrenal regeneration in rats.
Am J Physiology. 276:R1374–R1382. 1999.PubMed/NCBI
|
16
|
Mitani F, Suzuki H, Hata J, Ogishima T,
Shimada H and Ishimura Y: A novel cell layer without
corticosteroid-synthesizing enzymes in rat adrenal cortex:
histochemical detection and possible physiological role.
Endocrinology. 135:431–438. 1994.
|
17
|
Mitani F, Ogishima T, Miyamoto H and
Ishimura Y: Localization of P450aldo and P45011 beta in normal and
regenerating rat adrenal cortex. Endocr Res. 21:413–423. 1995.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Holzwarth MA, Shinsako J and Dallman MF:
Adrenal regeneration. Time course, effect of hypothalamic
hemi-islands and response to unilateral adrenalectomy.
Neuroendocrinology. 31:168–176. 1980.PubMed/NCBI
|
19
|
Buckingham JC and Hodges JR:
Interrelationships of pituitary and plasma corticotrophin and
plasma corticosterone in adrenalectomized and stressed,
adrenalectomized rats. J Endocrinol. 63:213–222. 1974. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tyczewska M, Rucinski M, Trejter M,
Ziolkowska A, Szyszka M and Malendowicz LK: Angiogenesis in the
course of enucleation-induced adrenal regeneration-expression of
selected genes and proteins involved in development of capillaries.
Peptides. 38:404–413. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Albertin G, Carraro G, Parnigoto PP,
Conconi MT, Ziolkowska A, Malendowicz LK and Nussdorfer GG: Human
skin keratinocytes and fibroblasts express adrenomedullin and its
receptors, and adrenomedullin enhances their growth in vitro by
stimulating proliferation and inhibiting apoptosis. Int J Mol Med.
11:635–639. 2003.
|
22
|
Tortorella C, Macchi C, Spinazzi R,
Malendowicz LK, Trejter M and Nussdorfer GG: Ghrelin, an endogenous
ligand for the growth hormone-secretagogue receptor, is expressed
in the human adrenal cortex. Int J Mol Med. 12:213–217.
2003.PubMed/NCBI
|
23
|
Rucinski M, Albertin G, Spinazzi R,
Ziolkowska A, Nussdorfer GG and Malendowicz LK: Cerebellin in the
rat adrenal gland: gene expression and effects of CER and
[des-Ser1]CER on the secretion and growth of cultured
adrenocortical cells. Int J Mol Med. 15:411–415. 2005.
|
24
|
Rucinski M, Andreis PG, Ziolkowska A,
Nussdorfer GG and Malendowicz LK: Differential expression and
function of beacon in the rat adrenal cortex and medulla. Int J Mol
Med. 16:35–40. 2005.PubMed/NCBI
|
25
|
Ziolkowska A, Rucinski M, Tortorella C,
Tyczewska M, Nussdorfer GG and Malendowicz LK: Cultured rat
calvarial osteoblast-like cells are provided with orexin type 1
receptors. Int J Mol Med. 20:779–782. 2007.PubMed/NCBI
|
26
|
Rucinski M, Ziolkowska A, Tyczewska M and
Malendowicz LK: Expression of prepro-ghrelin and related receptor
genes in the rat adrenal gland and evidences that ghrelin exerts a
potent stimulating effect on corticosterone secretion by cultured
rat adrenocortical cells. Peptides. 30:1448–1455. 2009. View Article : Google Scholar
|
27
|
Albertin G, Rucinski M, Carraro G,
Forneris M, Andreis P, Malendowicz LK and Nussdorfer GG:
Adrenomedullin and vascular endothelium growth factor genes are
overexpressed in the regenerating rat adrenal cortex, and AM and
VEGF reciprocally enhance their mRNA expression in cultured rat
adrenocortical cells. Int J Mol Med. 16:431–435. 2005.
|
28
|
Hochol A, Belloni AS, Rucinski M,
Ziolkowska A, Di Liddo R, Nussdorfer GG and Malendowicz LK:
Expression of neuropeptides B and W and their receptors in
endocrine glands of the rat. Int J Mol Med. 18:1101–1106.
2006.PubMed/NCBI
|
29
|
Engeland WC, Levay-Young BK, Paul JA and
Fitzgerald DA: Expression of cytochrome P450 aldosterone synthase
and 11 beta-hydroxylase mRNA during adrenal regeneration. Endocr
Res. 21:449–454. 1995. View Article : Google Scholar : PubMed/NCBI
|
30
|
Engeland WC, Gomez-Sanchez CE, Fitzgerald
DA, Rogers LM and Holzwarth MA: Phenotypic changes and
proliferation of adrenocortical cells during adrenal regeneration
in rats. Endocr Res. 22:395–400. 1996.PubMed/NCBI
|
31
|
Rucinski M, Tortorella C, Ziolkowska A,
Nowak M, Nussdorfer GG and Malendowicz LK: Steroidogenic acute
regulatory protein gene expression, steroid-hormone secretion and
proliferative activity of adrenocortical cells in the presence of
proteasome inhibitors: In vivo studies on the regenerating rat
adrenal cortex. Int J Mol Med. 21:593–597. 2008.
|
32
|
Hochol A, Markowska A, Meneghelli V,
Jedrzejczak N, Majchrzak M, Nowak M, Nussdorfer GG and Malendowicz
LK: Effects of neurotensin and bombesin on the secretory and
proliferative activity of regenerating rat adrenal cortex. Histol
Histopathol. 14:1073–1078. 1999.PubMed/NCBI
|
33
|
Markowska A, Nussdorfer GG and Malendowicz
LK: Effects of bombesin and neuromedin-B on the proliferative
activity of the rat adrenal cortex. Histol Histopathol. 8:359–362.
1993.PubMed/NCBI
|
34
|
Amano O, Kanda T, Ono T and Iseki S:
Immunocytochemical localization of rat intestinal 15 kDa protein, a
member of cytoplasmic fatty acid-binding proteins. Anat Rec.
234:215–222. 1992. View Article : Google Scholar : PubMed/NCBI
|
35
|
Iseki S, Amano O, Kanda T, Fujii H and Ono
T: Expression and localization of intestinal 15 kDa protein in the
rat. Mol Cell Biochem. 123:113–120. 1993. View Article : Google Scholar : PubMed/NCBI
|
36
|
Landschulz KT, Pathak RK, Rigotti A,
Krieger M and Hobbs HH: Regulation of scavenger receptor, class B,
type I, a high density lipoprotein receptor, in liver and
steroidogenic tissues of the rat. J Clin Invest. 98:984–995. 1996.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Temel RE, Trigatti B, DeMattos RB, Azhar
S, Krieger M and Williams DL: Scavenger receptor class B, type I
(SR-BI) is the major route for the delivery of high density
lipoprotein cholesterol to the steroidogenic pathway in cultured
mouse adrenocortical cells. Proc Natl Acad Sci USA. 94:13600–13605.
1997. View Article : Google Scholar
|
38
|
Rodrigueza WV, Thuahnai ST, Temel RE,
Lund-Katz S, Phillips MC and Williams DL: Mechanism of scavenger
receptor class B type I-mediated selective uptake of cholesteryl
esters from high density lipoprotein to adrenal cells. J Biol Chem.
274:20344–20350. 1999. View Article : Google Scholar : PubMed/NCBI
|
39
|
Out R, Hoekstra M, Spijkers JA, Kruijt JK,
van Eck M, Bos IS, Twisk J and Van Berkel TJ: Scavenger receptor
class B type I is solely responsible for the selective uptake of
cholesteryl esters from HDL by the liver and the adrenals in mice.
J Lipid Res. 45:2088–2095. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Azhar S, Leers-Sucheta S and Reaven E:
Cholesterol uptake in adrenal and gonadal tissues: the SR-BI and
‘selective’ pathway connection. Front Biosc. 8:998–1029. 2003.
|
41
|
Hołlysz M, Derebecka-Hołysz N and Trzeciak
WH: Transcription of LIPE gene encoding hormone-sensitive
lipase/cholesteryl esterase is regulated by SF-1 in human
adrenocortical cells: involvement of protein kinase A signal
transduction pathway. J Mol Endocrinol. 46:29–36. 2011.
|
42
|
Cook KG, Lee FT and Yeaman SJ:
Hormone-sensitive cholesterol ester hydrolase of bovine adrenal
cortex: identification of the enzyme protein. FEBS Lett. 132:10–14.
1981. View Article : Google Scholar : PubMed/NCBI
|
43
|
Beckett GJ and Boyd GS: Purification and
control of bovine adrenal cortical cholesterol ester hydrolase and
evidence for the activation of the enzyme by a phosphorylation. Eur
J Biochem. 72:223–233. 1977. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cook KG, Yeaman SJ, Strålfors P,
Fredrikson G and Belfrage P: Direct evidence that cholesterol ester
hydrolase from adrenal cortex is the same enzyme as
hormone-sensitive lipase from adipose tissue. Eur J Biochem.
125:245–249. 1982. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yeaman SJ: Hormone-sensitive lipase-new
roles for an old enzyme. Biochem J. 379:11–22. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kraemer FB and Shen WJ: Hormone-sensitive
lipase: control of intracellular tri-(di-)acylglycerol and
cholesteryl ester hydrolysis. J Lipid Res. 43:1585–1594. 2002.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Okazaki H, Igarashi M, Nishi M, Sekiya M,
Tajima M, Takase S, Takanashi M, Ohta K, Tamura Y, Okazaki S,
Yahagi N, Ohashi K, Amemiya-Kudo M, Nakagawa Y, Nagai R, Kadowaki
T, Osuga J and Ishibashi S: Identification of neutral cholesterol
ester hydrolase, a key enzyme removing cholesterol from
macrophages. J Biol Chem. 283:33357–33364. 2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kraemer FB, Shen WJ, Harada K, Patel S,
Osuga J, Ishibashi S and Azhar S: Hormone-sensitive lipase is
required for high-density lipoprotein cholesteryl ester-supported
adrenal steroidogenesis. Mol Endocrinol. 18:549–557. 2004.
View Article : Google Scholar
|
49
|
Osuga J, Ishibashi S, Oka T, Yagyu H,
Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer FB, Tsutsumi O
and Yamada N: Targeted disruption of hormone-sensitive lipase
results in male sterility and adipocyte hypertrophy, but not in
obesity. Proc Natl Acad Sci USA. 97:787–792. 2000. View Article : Google Scholar : PubMed/NCBI
|
50
|
Shen WJ, Patel S, Natu V, Hong R, Wang J,
Azhar S and Kraemer FB: Interaction of hormone-sensitive lipase
with steroidogenic acute regulatory protein: facilitation of
cholesterol transfer in adrenal. J Biol Chem. 278:43870–43876.
2003. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ohta K, Sekiya M, Uozaki H, Igarashi M,
Takase S, Kumagai M, Takanashi M, Takeuchi Y, Izumida Y, Kubota M,
Nishi M, Okazaki H, Iizuka Y, Yahagi N, Yagyu H, Fukayama M,
Kadowaki T, Ohashi K, Ishibashi S and Osuga J: Abrogation of
neutral cholesterol ester hydrolytic activity causes adrenal
enlargement. Biochem Biophys Res Commun. 404:254–260. 2011.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Meiner VL, Cases S, Myers HM, Sande ER,
Bellosta S, Schambelan M, Pitas RE, McGuire J, Herz J and Farese RV
Jr: Disruption of the acyl-CoA: cholesterol acyltransferase gene in
mice: evidence suggesting multiple cholesterol esterification
enzymes in mammals. Proc Natl Acad Sci USA. 93:14041–14046. 1996.
View Article : Google Scholar
|
53
|
Hammer GD and Ingraham HA: Steroidogenic
factor-1: its role in endocrine organ development and
differentiation. Front Neuroendocrinol. 20:199–223. 1999.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Parker KL and Schimmer BP: Steroidogenic
factor 1: a key determinant of endocrine development and function.
Endocr Rev. 18:361–377. 1997. View Article : Google Scholar : PubMed/NCBI
|
55
|
Muscatelli F, Strom TM, Walker AP, Zanaria
E, Récanx D, Meindl A, Bardoni B, Guioli S, Zehetner G, Rabl W,
Schwarz HP, Kaplan JC, Camerino G, Meitinger T and Monaco AP:
Mutations in the DAX-1 gene give rise to both X-linked adrenal
hypoplasia congenita and hypogonadotropic hypogonadism. Nature.
372:672–676. 1994. View Article : Google Scholar : PubMed/NCBI
|
56
|
Lala DS, Rice DA and Parker KL:
Steroidogenic factor I, a key regulator of steroidogenic enzyme
expression, is the mouse homolog of fushi tarazu-factor I. Mol
Endocrinol. 6:1249–1258. 1992.PubMed/NCBI
|
57
|
Beuschlein F, Keegan CE, Bavers DL, Mutch
C, Hutz JE, Shah S, Ulrich-Lai YM, Engeland WC, Jeffs B, Jameson JL
and Hammer GD: SF-1, DAX-1, and acd: molecular determinants
ofadrenocortical growth and steroidogenesis. Endocr Res.
28:597–607. 2002. View Article : Google Scholar : PubMed/NCBI
|