1
|
Weber C and Noels H: Atherosclerosis:
current pathogenesis and therapeutic options. Nat Med.
17:1410–1422. 2011. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Meyer MR, Haas E and Barton M: Gender
differences of cardiovascular disease: new perspectives for
estrogen receptor signaling. Hypertension. 47:1019–1026. 2006.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hodgin JB and Maeda N: Minireview:
estrogen and mouse models of atherosclerosis. Endocrinology.
143:4495–4501. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kavanagh K, Davis MA, Zhang L, et al:
Estrogen decreases atherosclerosis in part by reducing hepatic
acyl-CoA:cholesterol acyltransferase 2 (ACAT2) in monkeys.
Arterioscler Thromb Vasc Biol. 29:1471–1477. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ribas V, Drew BG, Le JA, et al:
Myeloid-specific estrogen receptor α deficiency impairs metabolic
homeostasis and accelerates atherosclerotic lesion development.
Proc Natl Acad Sci USA. 108:16457–16462. 2011.
|
6
|
Hulley S, Grady D, Bush T, et al:
Randomized trial of estrogen plus progestin for secondary
prevention of coronary heart disease in postmenopausal women. Heart
and Estrogen/progestin Replacement Study (HERS) Research Group.
JAMA. 280:605–613. 1998. View Article : Google Scholar
|
7
|
Rossouw JE, Anderson GL, Prentice RL, et
al; Writing Group for the Women’s Health Initiative Investigators.
Risks and benefits of estrogen plus progestin in healthy
postmenopausal women: principal results from the Women’s Health
Initiative randomized controlled trial. JAMA. 288:321–333.
2002.PubMed/NCBI
|
8
|
Rosenson RS, Brewer HB Jr, Davidson WS, et
al: Cholesterol efflux and atheroprotection advancing the concept
of reverse cholesterol transport. Circulation. 125:1905–1919. 2012.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Saeed O, Otsuka F, Polavarapu R, et al:
Pharmacological suppression of hepcidin increases macrophage
cholesterol efflux and reduces foam cell formation and
atherosclerosis. Arterioscler Thromb Vasc Biol. 32:299–307. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang X, Collins HL, Ranalletta M, et al:
Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage
reverse cholesterol transport in vivo. J Clin Invest.
117:2216–2224. 2007. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Wang X, Liao D, Bharadwaj U, Li M, Yao Q
and Chen C: C-reactive protein inhibits cholesterol efflux from
human macrophage-derived foam cells. Arterioscler Thromb Vasc Biol.
28:519–526. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ma L, Zhong J, Zhao Z, et al: Activation
of TRPV1 reduces vascular lipid accumulation and attenuates
atherosclerosis. Cardiovasc Res. 92:504–513. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Allahverdian S, Pannu PS and Francis GA:
Contribution of monocyte-derived macrophages and smooth muscle
cells to arterial foam cell formation. Cardiovasc Res. 95:165–172.
2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Stary HC, Chandler AB, Glagov S, et al: A
definition of initial, fatty streak, and intermediate lesions of
atherosclerosis. A report from the Committee on Vascular Lesions of
the Council on Arteriosclerosis, American Heart Association.
Arterioscler Thromb. 14:840–856. 1994. View Article : Google Scholar
|
15
|
Rong JX, Shapiro M, Trogan E and Fisher
EA: Transdifferentiation of mouse aortic smooth muscle cells to a
macrophage-like state after cholesterol loading. Proc Natl Acad Sci
USA. 100:13531–13536. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Higashimori M, Tatro JB, Moore KJ,
Mendelsohn ME, Galper JB and Beasley D: Role of toll-like receptor
4 in intimal foam cell accumulation in apolipoprotein E-deficient
mice. Arterioscler Thromb Vasc Biol. 31:50–57. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ueda K, Lu Q, Baur W, Aronovitz MJ and
Karas RH: Rapid estrogen receptor signaling mediates
estrogen-induced inhibition of vascular smooth muscle cell
proliferation. Arterioscler Thromb Vasc Biol. 33:1837–1843. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Jiang X, Zhang Y, Hou D, et al:
17beta-estradiol inhibits oleic acid-induced rat VSMC proliferation
and migration by restoring PGC-1alpha expression. Mol Cell
Endocrinol. 315:74–80. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jiang P, Xu J, Zheng S, et al:
17β-estradiol down-regulates lipopolysaccharide-induced MCP-1
production and cell migration in vascular smooth muscle cells. J
Mol Endocrinol. 45:87–97. 2010.
|
20
|
Metz RP, Patterson JL and Wilson E:
Vascular smooth muscle cells: isolation, culture, and
characterization. Methods Mol Biol. 843:169–176. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tsai JY, Su KH, Shyue SK, et al: EGb761
ameliorates the formation of foam cells by regulating the
expression of SR-A and ABCA1: role of haem oxygenase-1. Cardiovasc
Res. 88:415–423. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Han X, Kitamoto S, Lian Q and Boisvert WA:
Interleukin-10 facilitates both cholesterol uptake and efflux in
macrophages. J Biol Chem. 284:32950–32958. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Park SH, Kim JL, Kang MK, et al: Sage weed
(Salvia plebeia) extract antagonizes foam cell formation and
promotes cholesterol efflux in murine macrophages. Int J Mol Med.
30:1105–1112. 2012.
|
24
|
Yuan Y, Li P and Ye J: Lipid homeostasis
and the formation of macrophage-derived foam cells in
atherosclerosis. Protein Cell. 3:173–181. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rivera J, Walduck AK, Thomas SR, et al:
Accumulation of serum lipids by vascular smooth muscle cells
involves a macropinocytosis-like uptake pathway and is associated
with the downregulation of the ATP-binding cassette transporter A1.
Naunyn Schmiedebergs Arch Pharmacol. 386:1081–1093. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Xue JH, Yuan Z, Wu Y, et al: High glucose
promotes intracellular lipid accumulation in vascular smooth muscle
cells by impairing cholesterol influx and efflux balance.
Cardiovasc Res. 86:141–150. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Choi HY, Rahmani M, Wong BW, et al:
ATP-binding cassette transporter A1 expression and apolipoprotein
AI binding are impaired in intima-type arterial smooth muscle
cells. Circulation. 119:3223–3231. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Klouche M, Rose-John S, Schmiedt W and
Bhakdi S: Enzymatically degraded, nonoxidized LDL induces human
vascular smooth muscle cell activation, foam cell transformation,
and proliferation. Circulation. 101:1799–1805. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nofer JR: Estrogens and atherosclerosis:
insights from animal models and cell systems. J Mol Endocrinol.
48:R13–R29. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ghosh S, Zhao B, Bie J and Song J:
Macrophage cholesteryl ester mobilization and atherosclerosis.
Vascul Pharmacol. 52:1–10. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yvan-Charvet L, Wang N and Tall AR: Role
of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and
immune responses. Arterioscler Thromb Vasc Biol. 30:139–143. 2010.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhao C and Dahlman-Wright K: Liver X
receptor in cholesterol metabolism. J Endocrinol. 204:233–240.
2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yan JQ, Tan CZ, Wu JH, et al: Neopterin
negatively regulates expression of ABCA1 and ABCG1 by the LXRα
signaling pathway in THP-1 macrophage-derived foam cells. Mol Cell
Biochem. 379:123–131. 2013.PubMed/NCBI
|
34
|
Corcoran MP, Lichtenstein AH, Meydani M,
Dillard A, Schaefer EJ and Lamon-Fava S: The effect of
17β-estradiol on cholesterol content in human macrophages is
influenced by the lipoprotein milieu. J Mol Endocrinol. 47:109–117.
2011.
|
35
|
Cerda A, Issa MH, Genvigir FD, et al:
Atorvastatin and hormone therapy influence expression of ABCA1,
APOA1 and SCARB1 in mononuclear cells from hypercholesterolemic
postmenopausal women. J Steroid Biochem Mol Biol. 138:403–409.
2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kramer P and Wray S: 17-Beta-estradiol
regulates expression of genes that function in macrophage
activation and cholesterol homeostasis. J Steroid Biochem Mol Biol.
81:203–216. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Srivastava RA: Estrogen-induced regulation
of the ATP-binding cassette transporter A1 (ABCA1) in mice: a
possible mechanism of atheroprotection by estrogen. Mol Cell
Biochem. 240:67–73. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liang X, He M, Chen T, et al:
17β-estradiol suppresses the macrophage foam cell formation
associated with SOCS3. Horm Metab Res. 45:423–429. 2013.
|
39
|
Murphy E: Estrogen signaling and
cardiovascular disease. Circ Res. 109:687–696. 2011. View Article : Google Scholar
|
40
|
Hodgin JB, Krege JH, Reddick RL, Korach
KS, Smithies O and Maeda N: Estrogen receptor α is a major mediator
of 17β-estradiol’s atheroprotective effects on lesion size in
Apoe−/−mice. J Clin Invest. 107:333–340. 2001.
|
41
|
Villablanca AC, Tenwolde A, Lee M, Huck M,
Mumenthaler S and Rutledge JC: 17beta-estradiol prevents
early-stage atherosclerosis in estrogen receptor-alpha deficient
female mice. J Cardiovasc Transl Res. 2:289–299. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Rayner K, Sun J, Chen Y-X, et al: Heat
shock protein 27 protects against atherogenesis via an
estrogen-dependent mechanism: role of selective estrogen receptor
beta modulation. Arterioscler Thromb Vasc Biol. 29:1751–1756. 2009.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Xing D, Feng W, Miller AP, et al: Estrogen
modulates TNF-alpha-induced inflammatory responses in rat aortic
smooth muscle cells through estrogen receptor-beta activation. Am J
Physiol Heart Circ Physiol. 292:H2607–H2612. 2007. View Article : Google Scholar : PubMed/NCBI
|