The (pro)renin receptor mediates constitutive PLZF-independent pro-proliferative effects which are inhibited by bafilomycin but not genistein
- Authors:
- Sebastian Kirsch
- Eva Schrezenmeier
- Sabrina Klare
- Daniela Zaade
- Kerstin Seidel
- Jennifer Schmitz
- Sarah Bernhard
- Dilyara Lauer
- Mark Slack
- Petra Goldin-Lang
- Thomas Unger
- Frank S. Zollmann
- Heiko Funke-Kaiser
-
Affiliations: Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany, Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany, Evotec AG, Hamburg, Germany, School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands - Published online on: January 14, 2014 https://doi.org/10.3892/ijmm.2014.1624
- Pages: 795-808
-
Copyright: © Kirsch et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Funke-Kaiser H, Zollmann FS, Schefe JH and Unger T: Signal transduction of the (pro)renin receptor as a novel therapeutic target for preventing end-organ damage. Hypertens Res. 33:98–104. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T and Sraer JD: Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 109:1417–1427. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ichihara A, Hayashi M, Kaneshiro Y, et al: Inhibition of diabetic nephropathy by a decoy peptide corresponding to the ‘handle’ region for nonproteolytic activation of prorenin. J Clin Invest. 114:1128–1135. 2004.PubMed/NCBI | |
Ichihara A, Kaneshiro Y, Takemitsu T, et al: Nonproteolytic activation of prorenin contributes to development of cardiac fibrosis in genetic hypertension. Hypertension. 47:894–900. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kaneshiro Y, Ichihara A, Sakoda M, et al: Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. J Am Soc Nephrol. 18:1789–1795. 2007. View Article : Google Scholar : PubMed/NCBI | |
Susic D, Zhou X, Frohlich ED, Lippton H and Knight M: Cardiovascular effects of prorenin blockade in genetically spontaneously hypertensive rats on normal and high-salt diet. Am J Physiol Heart Circ Physiol. 295:H1117–H1121. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ichihara A, Suzuki F, Nakagawa T, et al: Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol. 17:1950–1961. 2006. View Article : Google Scholar : PubMed/NCBI | |
Takahashi H, Ichihara A, Kaneshiro Y, et al: Regression of nephropathy developed in diabetes by (pro)renin receptor blockade. J Am Soc Nephrol. 18:2054–2061. 2007. View Article : Google Scholar : PubMed/NCBI | |
Muller DN, Klanke B, Feldt S, et al: (Pro)renin receptor peptide inhibitor ‘handle-region’ peptide does not affect hypertensive nephrosclerosis in Goldblatt rats. Hypertension. 51:676–681. 2008. | |
Feldt S, Maschke U, Dechend R, Luft FC and Muller DN: The putative (pro)renin receptor blocker HRP fails to prevent (pro)renin signaling. J Am Soc Nephrol. 19:743–748. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nguyen G and Muller DN: The biology of the (pro)renin receptor. J Am Soc Nephrol. 21:18–23. 2010. View Article : Google Scholar | |
Ryuzaki M, Ichihara A, Ohshima Y, et al: Involvement of activated prorenin in the pathogenesis of slowly progressive nephropathy in the non-clipped kidney of two kidney, one-clip hypertension. Hypertens Res. 34:301–307. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kiyomoto H and Moriwaki K: Chronic blockade of the (pro)renin receptor ameliorates the kidney damage in the non-clipped kidney of Goldblatt hypertension. Hypertens Res. 34:289–291. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nagai Y, Ichihara A, Nakano D, et al: Possible contribution of the non-proteolytic activation of prorenin to the development of insulin resistance in fructose-fed rats. Exp Physiol. 94:1016–1023. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lavoi JL: Methods of treating or preventing obesity and obesity-related hypertension. Patentanmeldung WO 2009/143619 A1. 2009 | |
Satofuka S, Ichihara A, Nagai N, et al: Role of nonproteolytically activated prorenin in pathologic, but not physiologic, retinal neovascularization. Invest Ophthalmol Vis Sci. 48:422–429. 2007. View Article : Google Scholar : PubMed/NCBI | |
Satofuka S, Ichihara A, Nagai N, et al: (Pro)renin receptor-mediated signal transduction and tissue renin-angiotensin system contribute to diabetes-induced retinal inflammation. Diabetes. 58:1625–1633. 2009. View Article : Google Scholar | |
Wilkinson-Berka JL, Heine R, Tan G, Tikellis C, Cooper ME, Nguyen G and Miller AG: The role of the (pro)renin receptor in developing ischaemic and diabetic retina. J Renin Angiotensin Aldosterone Syst. 9(Suppl 1): S82008. | |
Mahmud H, Sillje HH, Cannon MV, van Gilst WH and de Boer RA: Regulation of the (pro)renin-renin receptor in cardiac remodelling. J Cell Mol Med. 16:722–729. 2012. View Article : Google Scholar : PubMed/NCBI | |
Melnyk RA, Tam J, Boie Y, Kennedy BP and Percival MD: Renin and prorenin activate pathways implicated in organ damage in human mesangial cells independent of angiotensin II production. Am J Nephrol. 30:232–243. 2009. View Article : Google Scholar : PubMed/NCBI | |
Connelly KA, Advani A, Kim S, et al: The cardiac (pro)renin receptor is primarily expressed in myocyte transverse tubules and is increased in experimental diabetic cardiomyopathy. J Hypertens. 29:1175–1184. 2011. View Article : Google Scholar : PubMed/NCBI | |
Siragy HM and Huang J: Renal (pro)renin receptor upregulation in diabetic rats through enhanced angiotensin AT1 receptor and NADPH oxidase activity. Exp Physiol. 93:709–714. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schefe JH, Menk M, Reinemund J, et al: A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res. 99:1355–1366. 2006. View Article : Google Scholar | |
Schefe JH, Neumann C, Goebel M, et al: Prorenin engages the (pro)renin receptor like renin and both ligand activities are unopposed by aliskiren. J Hypertens. 26:1787–1794. 2008. View Article : Google Scholar : PubMed/NCBI | |
Katz SA, Opsahl JA, Abraham PA and Gardner MJ: The relationship between renin isoelectric forms and renin glycoforms. Am J Physiol. 267:R244–R252. 1994.PubMed/NCBI | |
Cruciat CM, Ohkawara B, Acebron SP, et al: Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science. 327:459–463. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bader M: The second life of the (pro)renin receptor. J Renin Angiotensin Aldosterone Syst. 8:205–208. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ludwig J, Kerscher S, Brandt U, et al: Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem. 273:10939–10947. 1998. View Article : Google Scholar : PubMed/NCBI | |
Advani A, Kelly DJ, Cox AJ, et al: The (pro)renin receptor: site-specific and functional linkage to the vacuolar H+-ATPase in the kidney. Hypertension. 54:261–269. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sihn G, Rousselle A, Vilianovitch L, Burckle C and Bader M: Physiology of the (pro)renin receptor: Wnt of change? Kidney Int. 78:246–256. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L and Nguyen G: Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension. 53:1077–1082. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yoshikawa A, Aizaki Y, Kusano K, et al: The (pro)renin receptor is cleaved by ADAM19 in the Golgi leading to its secretion into extracellular space. Hypertens Res. 34:599–605. 2011. View Article : Google Scholar : PubMed/NCBI | |
Senbonmatsu T, Saito T, Landon EJ, et al: A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J. 22:6471–6482. 2003. View Article : Google Scholar : PubMed/NCBI | |
Seifert R and Wenzel-Seifert K: Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol. 366:381–416. 2002. View Article : Google Scholar : PubMed/NCBI | |
Funke-Kaiser H, Reichenberger F, Köpke K, et al: Differential binding of transcription factor E2F-2 to the endothelin-converting enzyme-1b promoter affects blood pressure regulation. Hum Mol Genet. 12:423–433. 2003. View Article : Google Scholar | |
Seidel K, Kirsch S, Lucht K, et al: The promyelocytic leukemia zinc finger (PLZF) protein exerts neuroprotective effects in neuronal cells and is dysregulated in experimental stroke. Brain Pathol. 21:31–43. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jansen EJ and Martens GJ: Novel insights into V-ATPase functioning: distinct roles for its accessory subunits ATP6AP1/Ac45 and ATP6AP2/(pro)renin receptor. Curr Protein Pept Sci. 13:124–133. 2012. View Article : Google Scholar : PubMed/NCBI | |
Holzman TF, Chung CC, Edalji R, et al: Recombinant human prorenin from CHO cells: expression and purification. J Protein Chem. 9:663–672. 1990. View Article : Google Scholar : PubMed/NCBI | |
Wautier JL and Schmidt AM: Protein glycation: a firm link to endothelial cell dysfunction. Circ Res. 95:233–238. 2004. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Yamamoto H, Hirose T, et al: Expression of (pro)renin receptor in human kidneys with end-stage kidney disease due to diabetic nephropathy. Peptides. 31:1405–1408. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang J and Siragy HM: Glucose promotes the production of interleukine-1beta and cyclooxygenase-2 in mesangial cells via enhanced (Pro)renin receptor expression. Endocrinology. 150:5557–5565. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang J and Siragy HM: Regulation of (pro)renin receptor expression by glucose-induced mitogen-activated protein kinase, nuclear factor-kappaB, and activator protein-1 signaling pathways. Endocrinology. 151:3317–3325. 2010. View Article : Google Scholar | |
Sennoune SR and Martinez-Zaguilan R: Vacuolar H+-ATPase signaling pathway in cancer. Curr Protein Pept Sci. 13:152–163. 2012. | |
Krop M, Lu X, Danser AH and Meima ME: The (pro)renin receptor. A decade of research: what have we learned? Pflugers Arch. 465:87–97. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fukushima A, Kinugawa S, Homma T, et al: Increased plasma soluble (pro)renin receptor levels are correlated with renal dysfunction in patients with heart failure. Int J Cardiol. 168:4313–4314. 2013. View Article : Google Scholar : PubMed/NCBI | |
Batenburg WW, Lu X, Leijten F, Maschke U, Muller DN and Danser AH: Renin- and prorenin-induced effects in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor: does (pro)renin-(pro)renin receptor interaction actually occur? Hypertension. 58:1111–1119. 2011. View Article : Google Scholar | |
Sakoda M, Ichihara A, Kaneshiro Y, et al: (Pro)renin receptor-mediated activation of mitogen-activated protein kinases in human vascular smooth muscle cells. Hypertens Res. 30:1139–1146. 2007. View Article : Google Scholar : PubMed/NCBI | |
Saris JJ, van den Eijnden MM, Lamers JM, Saxena PR, Schalekamp MA and Danser AH: Prorenin-induced myocyte proliferation: no role for intracellular angiotensin II. Hypertension. 39:573–577. 2002. View Article : Google Scholar : PubMed/NCBI | |
Uraoka M, Ikeda K, Nakagawa Y, et al: Prorenin induces ERK activation in endothelial cells to enhance neovascularization independently of the renin-angiotensin system. Biochem Biophys Res Commun. 390:1202–1207. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kinouchi K, Ichihara A, Sano M, et al: The (pro)renin receptor/ATP6AP2 is essential for vacuolar H+-ATPase assembly in murine cardiomyocytes. Circ Res. 107:30–34. 2010. View Article : Google Scholar : PubMed/NCBI | |
Riediger F, Quack I, Qadri F, et al: Prorenin receptor is essential for podocyte autophagy and survival. J Am Soc Nephrol. 22:2193–2202. 2011. View Article : Google Scholar : PubMed/NCBI | |
Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S and Hopkins N: Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA. 101:12792–12797. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liang P, Jones CA, Bisgrove BW, et al: Genomic characterization and expression analysis of the first nonmammalian renin genes from zebrafish and pufferfish. Physiol Genomics. 16:314–322. 2004. View Article : Google Scholar : PubMed/NCBI | |
Reudelhuber TL: The interaction between prorenin, renin and the (pro)renin receptor: time to rethink the role in hypertension. Curr Opin Nephrol Hypertens. 21:137–141. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bader M: The (pro)renin receptor, (P)RR/ATP6AP2, a bifunctional protein? J Renin Angiotensin Aldosterone Syst. 9(Suppl 1): S52008. | |
Juillerat-Jeanneret L, Celerier J, Chapuis Bernasconi C, et al: Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma. Br J Cancer. 90:1059–1068. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rusin A, Krawczyk Z, Grynkiewicz G, Gogler A, Zawisza-Puchalka J and Szeja W: Synthetic derivatives of genistein, their properties and possible applications. Acta Biochim Pol. 57:23–34. 2010.PubMed/NCBI | |
Soucy NV, Parkinson HD, Sochaski MA and Borghoff SJ: Kinetics of genistein and its conjugated metabolites in pregnant Sprague-Dawley rats following single and repeated genistein administration. Toxicol Sci. 90:230–240. 2006. View Article : Google Scholar : PubMed/NCBI | |
Spinozzi F, Pagliacci MC, Migliorati G, et al: The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leukemia cells. Leuk Res. 18:431–439. 1994. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Simmen FA, Xiao R and Simmen RC: Expression profiling of rat mammary epithelial cells reveals candidate signaling pathways in dietary protection from mammary tumors. Physiol Genomics. 30:8–16. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Chen H: Genistein, an epigenome modifier during cancer prevention. Epigenetics. 6:888–891. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gullett NP, Ruhul Amin AR, Bayraktar S, et al: Cancer prevention with natural compounds. Semin Oncol. 37:258–281. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pavese JM, Farmer RL and Bergan RC: Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev. 29:465–482. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rusin A, Zawisza-Puchalka J, Kujawa K, et al: Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells. Bioorg Med Chem. 19:295–305. 2011. View Article : Google Scholar : PubMed/NCBI | |
El-Rayes BF, Philip PA, Sarkar FH, et al: A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer. Invest New Drugs. 29:694–699. 2011. View Article : Google Scholar : PubMed/NCBI | |
McSheehy PM, Troy H, Kelland LR, Judson IR, Leach MO and Griffiths JR: Increased tumour extracellular pH induced by Bafilomycin A1 inhibits tumour growth and mitosis in vivo and alters 5-fluorouracil pharmacokinetics. Eur J Cancer. 39:532–540. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kinoshita K, Waritani T, Noto M, et al: Bafilomycin A1 induces apoptosis in PC12 cells independently of intracellular pH. FEBS Lett. 398:61–66. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ohta T, Arakawa H, Futagami F, et al: Bafilomycin A1 induces apoptosis in the human pancreatic cancer cell line Capan-1. J Pathol. 185:324–330. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lee CM and Tannock IF: Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and tissue penetration. Br J Cancer. 94:863–869. 2006. View Article : Google Scholar : PubMed/NCBI | |
http://www.clinicaltrials.gov/ct2/results?term=bafilomycin&Search=Search. accessed 19/12/2013 | |
Elmarakby AA, Ibrahim AS, Faulkner J, Mozaffari MS, Liou GI and Abdelsayed R: Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vascul Pharmacol. 55:149–156. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhong WW, Liu Y and Li CL: Mechanisms of genistein protection on pancreas cell damage in high glucose condition. Intern Med. 50:2129–2134. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hettiarachchi KD, Zimmet PZ and Myers MA: The effects of repeated exposure to sub-toxic doses of plecomacrolide antibiotics on the endocrine pancreas. Food Chem Toxicol. 44:1966–1977. 2006. View Article : Google Scholar : PubMed/NCBI | |
Myers MA, Hettiarachchi KD, Ludeman JP, Wilson AJ, Wilson CR and Zimmet PZ: Dietary microbial toxins and type 1 diabetes. Ann NY Acad Sci. 1005:418–422. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lammi N, Karvonen M and Tuomilehto J: Do microbes have a causal role in type 1 diabetes? Med Sci Monit. 11:RA63–RA69. 2005.PubMed/NCBI | |
Klein CB and King AA: Genistein genotoxicity: critical considerations of in vitro exposure dose. Toxicol Appl Pharmacol. 224:1–11. 2007. View Article : Google Scholar : PubMed/NCBI | |
Labbaye C, Spinello I, Quaranta MT, et al: A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol. 10:788–801. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang W and Liu HT: MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12:9–18. 2002. View Article : Google Scholar | |
Barker N and Clevers H: Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 5:997–1014. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sennoune SR, Luo D and Martinez-Zaguilan R: Plasmalemmal vacuolar-type H+-ATPase in cancer biology. Cell Biochem Biophys. 40:185–206. 2004. View Article : Google Scholar | |
Huang Y, Noble NA, Zhang J, Xu C and Border WA: Renin-stimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int. 72:45–52. 2007. View Article : Google Scholar : PubMed/NCBI | |
Balakumar P and Jagadeesh G: Potential cross-talk between (pro)renin receptors and Wnt/frizzled receptors in cardiovascular and renal disorders. Hypertens Res. 34:1161–1170. 2011. View Article : Google Scholar : PubMed/NCBI |