1
|
Van Crombruggen K, Zhang N, Gevaert P, et
al: Pathogenesis of chronic rhinosinusitis: inflammation. J Allergy
Clin Immunol. 128:728–732. 2011.PubMed/NCBI
|
2
|
Fokkens WJ, Lund VJ, Mullol J, et al:
European position paper on rhinosinusitis and nasal polyps 2012.
Rhinol. Suppl 3:1–298. 2012.
|
3
|
Lutz CS and Moreira A: Alternative mRNA
polyadenylation in eukaryotes: an effective regulator of gene
expression. Wiley Interdiscip Rev RNA. 2:22–31. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tian B, Hu J, Zhang H and Lutz CS: A
large-scale analysis of mRNA polyadenylation of human and mouse
genes. Nucleic Acids Res. 33:201–212. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Andreassi C and Riccio A: To localize or
not to localize: mRNA fate is in 3′UTR ends. Trends Cell Biol.
19:465–474. 2009.
|
6
|
Jenal M, Elkon R, Loayza-Puch F, et al:
The poly(A)-binding protein nuclear 1 suppresses alternative
cleavage and polyadenylation sites. Cell. 149:538–553. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Harteveld CL, Losekoot M, Haak H, et al: A
novel polyadenylation signal mutation in the alpha 2-globin gene
causing alpha thalassaemia. Br J Haematol. 87:139–143. 1994.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Danckwardt S, Gantzert AS,
Macher-Goeppinger S, et al: p38 MAPK controls prothrombin
expression by regulated RNA 3′ end processing. Mol Cell.
41:298–310. 2011.PubMed/NCBI
|
9
|
Flavell SW and Greenberg ME: Signaling
mechanisms linking neuronal activity to gene expression and
plasticity of the nervous system. Annu Rev Neurosci. 31:563–590.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sandberg R, Neilson JR, Sarma A, et al:
Proliferating cells express mRNAs with shortened 3′ untranslated
regions and fewer microRNA target sites. Science. 320:1643–1647.
2008.PubMed/NCBI
|
11
|
Mayr C and Bartel DP: Widespread
shortening of 3′UTRs by alternative cleavage and polyadenylation
activates oncogenes in cancer cells. Cell. 138:673–684. 2009.
|
12
|
Tian P, Sun Y, Li Y, et al: A global
analysis of tandem 3′UTRs in eosinophilic chronic rhinosinusitis
with nasal polyps. PLoS One. 7:e489972012.
|
13
|
Fu Y, Sun Y, Li Y, et al: Differential
genome-wide profiling of tandem 3′ UTRs among human breast cancer
and normal cells by high-throughput sequencing. Genome Res.
21:741–747. 2011.
|
14
|
Li Y, Sun Y, Fu Y, et al: Dynamic
landscape of tandem 3′ UTRs during zebrafish development. Genome
Res. 22:1899–1906. 2012.
|
15
|
Langmead B, Trapnell C, Pop M and Salzberg
SL: Ultrafast and memory-efficient alignment of short DNA sequences
to the human genome. Genome Biol. 10:R252009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Agresti A: Categorical Data Analysis. 3rd
edition. Wiley-Blackwell; 2012
|
17
|
Huang DW, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009.PubMed/NCBI
|
18
|
Morris AR, Bos A, Diosdado B, et al:
Alternative cleavage and polyadenylation during colorectal cancer
development. Clin Cancer Res. 18:5256–5266. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ji Z, Lee JY, Pan Z, et al: Progressive
lengthening of 3′ untranslated regions of mRNAs by alternative
polyadenylation during mouse embryonic development. Proc Natl Acad
Sci USA. 106:7028–7033. 2009.
|
20
|
Yoon OK, Hsu TY, Im JH and Brem RB:
Genetics and regulatory impact of alternative polyadenylation in
human B-lymphoblastoid cells. PLoS Genet. 8:e10028822012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wu CI, Shen Y and Tang T: Evolution under
canalization and the dual roles of microRNAs: a hypothesis. Genome
Res. 19:734–743. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shembade N, Harhaj NS, Liebl DJ and Harhaj
EW: Essential role for TAX1BP1 in the termination of TNF-alpha-,
IL-1- and LPS-mediated NF-kappaB and JNK signaling. EMBO J.
26:3910–3922. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fabriek BO, van Bruggen R, Deng DM, et al:
The macrophage scavenger receptor CD163 functions as an innate
immune sensor for bacteria. Blood. 113:887–892. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kneidl J, Loffler B, Erat MC, et al:
Soluble CD163 promotes recognition, phagocytosis and killing of
Staphylococcus aureus via binding of specific fibronectin
peptides. Cell Microbiol. 14:914–936. 2012.PubMed/NCBI
|
25
|
Belov AA and Mohammadi M: Grb2, a
double-edged sword of receptor tyrosine kinase signaling. Sci
Signal. 5:pe492012.PubMed/NCBI
|
26
|
Skeeles LE, Fleming JL, Mahler KL and
Toland AE: The impact of 3′UTR variants on differential expression
of candidate cancer susceptibility genes. PLoS One.
8:e586092013.
|